Distributed dual averaging algorithm for multi-agent optimization with coupled constraints
Kybernetika (2024)
- Issue: 4, page 427-445
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topTu, Zhipeng, and Liang, Shu. "Distributed dual averaging algorithm for multi-agent optimization with coupled constraints." Kybernetika (2024): 427-445. <http://eudml.org/doc/299543>.
@article{Tu2024,
abstract = {This paper investigates a distributed algorithm for the multi-agent constrained optimization problem, which is to minimize a global objective function formed by a sum of local convex (possibly nonsmooth) functions under both coupled inequality and affine equality constraints. By introducing auxiliary variables, we decouple the constraints and transform the multi-agent optimization problem into a variational inequality problem with a set-valued monotone mapping. We propose a distributed dual averaging algorithm to find the weak solutions of the variational inequality problem with an $O(1/\sqrt\{k\})$ convergence rate, where $k$ is the number of iterations. Moreover, we show that weak solutions are also strong solutions that match the optimal primal-dual solutions to the considered optimization problem. A numerical example is given for illustration.},
author = {Tu, Zhipeng, Liang, Shu},
journal = {Kybernetika},
keywords = {distributed optimization; coupled constraints; dual averaging; variational inequality; multi-agent networks},
language = {eng},
number = {4},
pages = {427-445},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Distributed dual averaging algorithm for multi-agent optimization with coupled constraints},
url = {http://eudml.org/doc/299543},
year = {2024},
}
TY - JOUR
AU - Tu, Zhipeng
AU - Liang, Shu
TI - Distributed dual averaging algorithm for multi-agent optimization with coupled constraints
JO - Kybernetika
PY - 2024
PB - Institute of Information Theory and Automation AS CR
IS - 4
SP - 427
EP - 445
AB - This paper investigates a distributed algorithm for the multi-agent constrained optimization problem, which is to minimize a global objective function formed by a sum of local convex (possibly nonsmooth) functions under both coupled inequality and affine equality constraints. By introducing auxiliary variables, we decouple the constraints and transform the multi-agent optimization problem into a variational inequality problem with a set-valued monotone mapping. We propose a distributed dual averaging algorithm to find the weak solutions of the variational inequality problem with an $O(1/\sqrt{k})$ convergence rate, where $k$ is the number of iterations. Moreover, we show that weak solutions are also strong solutions that match the optimal primal-dual solutions to the considered optimization problem. A numerical example is given for illustration.
LA - eng
KW - distributed optimization; coupled constraints; dual averaging; variational inequality; multi-agent networks
UR - http://eudml.org/doc/299543
ER -
References
top- Auslender, A., Correa, R., , Comput. Optim. Appl. 17 (2000), 117-130. MR1806249DOI
- Auslender, A., Teboulle, M., , Math. Program. 120 (2009), 27-48. MR2496425DOI
- Bertsekas, D. P., Tsitsiklis, J. N., Parallel and Distributed Computation: Numerical Methods., Prentice hall Englewood Cliffs, NJ 1989. MR0896902
- Borwein, J. M., Zhu, Q. J., Techniques of Variational Analysis., Springer Science and Business Media, New York 2004. Zbl1076.49001MR2144010
- Chang, T. H., Nedić, A., Scaglione, A., , IEEE Trans. Automat. Control 59 (2014), 1524-1538. MR3225227DOI
- Chen, G., Xu, G., Li, W., Hong, Y., , IEEE Trans. Automat. Control (2023), 1-8. MR4664160DOI
- Cherukuri, A., Cortés, J., , IEEE Trans. Control Network Syst. 2 (2015), 226-237. MR3401184DOI
- Duchi, J. C., Agarwal, A., Wainwright, M. J., , IEEE Trans. Automat. Control 57 (2011), 592-606. MR2932818DOI
- Facchinei, F., Pang, J. S., Finite-dimensional Variational Inequalities and Complementarity Problems., Springer Science and Business Media, 2007. MR1955648
- Gutman, I., Xiao, W., Generalized inverse of the Laplacian matrix and some applications., Bulletin (Académie serbe des sciences et des arts. Classe des sciences mathématiques et naturelles. Sciences mathématiques) (2004), 15-23. MR2099614
- Hiriart-Urruty, J. B., Lemaréchal, C., Convex Analysis and Minimization Algorithms I: Fundamentals., Springer Science and Business Media, 2013. MR1261420
- Johansson, B., Keviczky, T., Johansson, M., Johansson, K. H., , In: 47th IEEE Conference on Decision and Control, IEEE 2008, pp. 4185-4190. DOI
- Koshal, J., Nedić, A., Shanbhag, U. V., , SIAM J. Optim. 21 (2011), 1046-1081. MR2837563DOI
- Liang, S., Zeng, X., Hong, Y., , IEEE Trans. Automat. Control 63 (2017), 1753-1759. MR3807659DOI
- Liang, S., Wang, L., Yin, G., , IEEE Trans. Automat. Control 65 (2019), 347-353. MR4052883DOI
- Liang, S., Wang, L., Yin, G., , IEEE Trans. Cybernetics 51 (2019), 2529-2539. DOI
- Liu, Q., Wang, J., , IEEE Trans. Automat. Control 60 (2015), 3310-3315. MR3432700DOI
- Lou, Y., Hong, Y., Wang, S., , Automatica 69 (2016), 289-297. Zbl1338.93026MR3500113DOI
- Nedić, A., Ozdaglar, A., , SIAM J. Optim. 19 (2009), 1757-1780. MR2486049DOI
- Nesterov, Y., Introductory Lectures on Convex Optimization: A Basic Course., Springer Science and Business Media, 2003. MR2142598
- Nesterov, Y., , Math. Program. 109.2-3 (2007), 319-344. MR2295146DOI
- Nesterov, Y., , Math. Program. 120 (2009), 221-259. MR2496434DOI
- Nesterov, Y., Shikhman, V., , Europ. J. Oper. Res. 270 (2018), 907-916. MR3814538DOI
- Rabbat, M., Nowak, R., Distributed optimization in sensor networks., In: Proc. 3rd International Symposium on Information Processing in Sensor Networks, 2004, pp. 20-27.
- Regina, S. B., Iusem, A., Set-Valued Mappings and Enlargements of Monotone Operators., Springer, New York 2003.
- Rockafellar, R. T., , Pacific J. Math. 17 (1966), 497-510. MR0193549DOI
- Rockafellar, R. T., , Trans. Amer. Math. Soc. 149 (1970), 75-88. MR0282272DOI
- Ruszczynski, A., Nonlinear Optimization., Princeton University Press, 2011. MR2199043
- Shafarevich, I. R., Remizov, A. O., Linear Algebra and Geometry., Springer Science and Business Media, 2012. MR2963561
- Tu, Z., Li, W., , Kybernetika 57 (2021), 60-77. MR4231857DOI
- Xiao, L., Boyd, S., , J. Optim. Theory Appl. 129 (2006), 469-488. MR2281152DOI
- Xiao, L., Boyd, S., Kim, S. J., , J. Parallel Distributed Comput. 67 (2007), 33-46. DOI
- Yao, J. C., , Math. Oper. Res. 19 (1994), 691-705. MR1288894DOI
- Yi, P., Hong, Y., Liu, F., , Systems Control Lett. 83 (2015), 45-52. Zbl1327.93033MR3373270DOI
- Yi, P., Hong, Y., Liu, F., , Automatica 74 (2016), 259-269. MR3569392DOI
- Yi, P., Pavel, L., , In: 2017 IEEE 56th Annual Conference on Decision and Control, IEEE 2017, pp. 3841-3846. DOI
- Zeng, X., Liang, S., Hong, Y., Chen, J., , IEEE Trans. Automat. Control 64 (2018), 1858-1873. MR3951032DOI
- Zeng, X., Yi, P., Hong, Y., , IEEE Trans. Automat. Control 62 (2016), 5227-5233. MR3708893DOI
- Zhang, Y., Zavlanos, M., , In: 2018 Conference on Decision and Control, IEEE 2018, pp. 1763-1768. DOI
- Zhu, M., Martínez, S., , IEEE Trans. Automat. Control 57 (2011), 151-164. MR2917654DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.