Multi-agent solver for non-negative matrix factorization based on optimization
Kybernetika (2021)
- Issue: 1, page 60-77
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topTu, Zhipeng, and Li, Weijian. "Multi-agent solver for non-negative matrix factorization based on optimization." Kybernetika (2021): 60-77. <http://eudml.org/doc/297550>.
@article{Tu2021,
abstract = {This paper investigates a distributed solver for non-negative matrix factorization (NMF) over a multi-agent network. After reformulating the problem into the standard distributed optimization form, we design our distributed algorithm (DisNMF) based on the primal-dual method and in the form of multiplicative update rule. With the help of auxiliary functions, we provide monotonic convergence analysis. Furthermore, we show by computational complexity analysis and numerical examples that our distributed NMF algorithm performs well in comparison with the centralized NMF algorithm.},
author = {Tu, Zhipeng, Li, Weijian},
journal = {Kybernetika},
keywords = {distributed optimization; non-negative matrix factorization; multiplicative update rules; multi-agent network},
language = {eng},
number = {1},
pages = {60-77},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Multi-agent solver for non-negative matrix factorization based on optimization},
url = {http://eudml.org/doc/297550},
year = {2021},
}
TY - JOUR
AU - Tu, Zhipeng
AU - Li, Weijian
TI - Multi-agent solver for non-negative matrix factorization based on optimization
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
IS - 1
SP - 60
EP - 77
AB - This paper investigates a distributed solver for non-negative matrix factorization (NMF) over a multi-agent network. After reformulating the problem into the standard distributed optimization form, we design our distributed algorithm (DisNMF) based on the primal-dual method and in the form of multiplicative update rule. With the help of auxiliary functions, we provide monotonic convergence analysis. Furthermore, we show by computational complexity analysis and numerical examples that our distributed NMF algorithm performs well in comparison with the centralized NMF algorithm.
LA - eng
KW - distributed optimization; non-negative matrix factorization; multiplicative update rules; multi-agent network
UR - http://eudml.org/doc/297550
ER -
References
top- Bertsekas, D. P., Tsitsiklis, J. W., , Prentice hall Englewood Cliffs, NJ 1989. MR0896902DOI
- Cai, D., He, X., Han, J., Huang, T. S., , IEEE Trans. Pattern Analysis Machine Intell. 33 (2010), 1548-1560. DOI
- Deng, W., Zeng, X., Hong, Y., , IEEE Control Systems Lett. 4 (2019), 414-419. MR4211320DOI
- Godsil, Ch., Royle, G. F., Algebraic graph theory., Springer Science Business Media 207 (2013). MR1829620
- He, X., Kan, M.-Y., Xie, P., Chen, X., , In: Proc. 23rd International Conference on World wide web, 2014, pp. 771-782. DOI
- Horst, R., Tuy, H., , Springer-Verlag, Berlin 1996. MR1102239DOI
- Huang, K., Sidiropoulos, N. D., Swami, A., , IEEE Trans. Signal Process. 62 (2013), 211-224. MR3187989DOI
- Jain, P., Kar, P., , arXiv preprint arXiv:1712.07897, 2017. DOI
- Kim, H., Park, H., , SIAM J. Matrix Analysis Appl. 30 (2008), 713-730. MR2421467DOI
- Lee, D. L., Seung, H. S., , Nature 401 (1999), 788-791. DOI
- Lee, D. S., Seung, H. S., Algorithms for non-negative matrix factorization., Adv. Neural Inform. Process. Systems xx (2001), 556-562.
- Li, W., Zeng, X., Hong, Y., Ji, H., , IEEE Trans. Automat. Control(2020). MR4210456DOI
- Lin, Ch.-J., , Neural Comput. 19 (2007), 2756-2779. MR2348161DOI
- Liu, Ch., Yang, H.-Ch., Fan, J., He, L.-W., Wang, Y.-M., , In: Proc. 19th International Conference on World wide web (2010), pp. 681-690. DOI
- Liu, J., Wang, Ch., Gao, J., Han, J., , In: Proc. 2013 SIAM International Conference on Data Mining, SIAM 2013, pp. 252-260. DOI
- Nedic, A., A, Ozdaglar, Parrilo, P. A., , IEEE Trans. Automat. Control 55 (2010), 922-938. MR2654432DOI
- Peterka, V., , In: Trends and Progress in System Identification (P. Eykhoff, ed.), Pergamon Press, Oxford 1981, pp. 239-304. Zbl0451.93059MR0607193DOI
- Qiu, Z., Liu, S., Xie, L., , Automatica 68 (2016), 209-215. MR3483686DOI
- Ram, S. S., Nedić, A., Veeravalli, V. V., , J. Optim. Theory Appl. 147 (2010), 516-545. MR2733992DOI
- Shi, G., Anderson, B. D. O., Helmke, U., , IEEE Trans. Automat. Control 62 (2017), 2659-2674. MR3660554DOI
- Wen, Z., Yin, W., Zhang, Y., , Math. Programm. Comput. 4 (2012), 333-361. MR3006618DOI
- Xu, F., He, G., New algorithms for nonnegative matrix completion., Pacific J. Optim. 11 (2015), 459-469. MR3384550
- Yang, S., Liu, Q., Wang, J., , IEEE Trans. Automat. Control 62 (2016), 3461-3467. MR3669466DOI
- Yi, P., Hong, Y., Liu, F., , Systems Control Lett. 83 (2015), 45-52. Zbl1327.93033MR3373270DOI
- Yin, J., Gao, L., Zhang, Z. M., , In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Springer-Heidelberg, Berlin 2014, pp. 337-352. DOI
- Yuan, D., Ho, D. W. C., Xu, S., , IEEE Trans. Cybernet. 46 (2015), 2109-2118. DOI
- Zeng, X., Cao, K., , Kybernetika 53 (2017), 803-819. MR3750104DOI
- Zeng, X., Yi, P., Hong, Y., , IEEE Trans. Automat. Control 62 (2016), 5227-5233. MR3708893DOI
- Zeng, X., Liang, S., Hong, Y., Chen, J., , IEEE Trans. Automat. Control 64 (2019), 1858-1873. MR3951032DOI
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.