Multi-agent solver for non-negative matrix factorization based on optimization

Zhipeng Tu; Weijian Li

Kybernetika (2021)

  • Issue: 1, page 60-77
  • ISSN: 0023-5954

Abstract

top
This paper investigates a distributed solver for non-negative matrix factorization (NMF) over a multi-agent network. After reformulating the problem into the standard distributed optimization form, we design our distributed algorithm (DisNMF) based on the primal-dual method and in the form of multiplicative update rule. With the help of auxiliary functions, we provide monotonic convergence analysis. Furthermore, we show by computational complexity analysis and numerical examples that our distributed NMF algorithm performs well in comparison with the centralized NMF algorithm.

How to cite

top

Tu, Zhipeng, and Li, Weijian. "Multi-agent solver for non-negative matrix factorization based on optimization." Kybernetika (2021): 60-77. <http://eudml.org/doc/297550>.

@article{Tu2021,
abstract = {This paper investigates a distributed solver for non-negative matrix factorization (NMF) over a multi-agent network. After reformulating the problem into the standard distributed optimization form, we design our distributed algorithm (DisNMF) based on the primal-dual method and in the form of multiplicative update rule. With the help of auxiliary functions, we provide monotonic convergence analysis. Furthermore, we show by computational complexity analysis and numerical examples that our distributed NMF algorithm performs well in comparison with the centralized NMF algorithm.},
author = {Tu, Zhipeng, Li, Weijian},
journal = {Kybernetika},
keywords = {distributed optimization; non-negative matrix factorization; multiplicative update rules; multi-agent network},
language = {eng},
number = {1},
pages = {60-77},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Multi-agent solver for non-negative matrix factorization based on optimization},
url = {http://eudml.org/doc/297550},
year = {2021},
}

TY - JOUR
AU - Tu, Zhipeng
AU - Li, Weijian
TI - Multi-agent solver for non-negative matrix factorization based on optimization
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
IS - 1
SP - 60
EP - 77
AB - This paper investigates a distributed solver for non-negative matrix factorization (NMF) over a multi-agent network. After reformulating the problem into the standard distributed optimization form, we design our distributed algorithm (DisNMF) based on the primal-dual method and in the form of multiplicative update rule. With the help of auxiliary functions, we provide monotonic convergence analysis. Furthermore, we show by computational complexity analysis and numerical examples that our distributed NMF algorithm performs well in comparison with the centralized NMF algorithm.
LA - eng
KW - distributed optimization; non-negative matrix factorization; multiplicative update rules; multi-agent network
UR - http://eudml.org/doc/297550
ER -

References

top
  1. Bertsekas, D. P., Tsitsiklis, J. W., , Prentice hall Englewood Cliffs, NJ 1989. MR0896902DOI
  2. Cai, D., He, X., Han, J., Huang, T. S., , IEEE Trans. Pattern Analysis Machine Intell. 33 (2010), 1548-1560. DOI
  3. Deng, W., Zeng, X., Hong, Y., , IEEE Control Systems Lett. 4 (2019), 414-419. MR4211320DOI
  4. Godsil, Ch., Royle, G. F., Algebraic graph theory., Springer Science Business Media 207 (2013). MR1829620
  5. He, X., Kan, M.-Y., Xie, P., Chen, X., , In: Proc. 23rd International Conference on World wide web, 2014, pp. 771-782. DOI
  6. Horst, R., Tuy, H., , Springer-Verlag, Berlin 1996. MR1102239DOI
  7. Huang, K., Sidiropoulos, N. D., Swami, A., , IEEE Trans. Signal Process. 62 (2013), 211-224. MR3187989DOI
  8. Jain, P., Kar, P., , arXiv preprint arXiv:1712.07897, 2017. DOI
  9. Kim, H., Park, H., , SIAM J. Matrix Analysis Appl. 30 (2008), 713-730. MR2421467DOI
  10. Lee, D. L., Seung, H. S., , Nature 401 (1999), 788-791. DOI
  11. Lee, D. S., Seung, H. S., Algorithms for non-negative matrix factorization., Adv. Neural Inform. Process. Systems xx (2001), 556-562. 
  12. Li, W., Zeng, X., Hong, Y., Ji, H., , IEEE Trans. Automat. Control(2020). MR4210456DOI
  13. Lin, Ch.-J., , Neural Comput. 19 (2007), 2756-2779. MR2348161DOI
  14. Liu, Ch., Yang, H.-Ch., Fan, J., He, L.-W., Wang, Y.-M., , In: Proc. 19th International Conference on World wide web (2010), pp. 681-690. DOI
  15. Liu, J., Wang, Ch., Gao, J., Han, J., , In: Proc. 2013 SIAM International Conference on Data Mining, SIAM 2013, pp. 252-260. DOI
  16. Nedic, A., A, Ozdaglar, Parrilo, P. A., , IEEE Trans. Automat. Control 55 (2010), 922-938. MR2654432DOI
  17. Peterka, V., , In: Trends and Progress in System Identification (P. Eykhoff, ed.), Pergamon Press, Oxford 1981, pp. 239-304. Zbl0451.93059MR0607193DOI
  18. Qiu, Z., Liu, S., Xie, L., , Automatica 68 (2016), 209-215. MR3483686DOI
  19. Ram, S. S., Nedić, A., Veeravalli, V. V., , J. Optim. Theory Appl. 147 (2010), 516-545. MR2733992DOI
  20. Shi, G., Anderson, B. D. O., Helmke, U., , IEEE Trans. Automat. Control 62 (2017), 2659-2674. MR3660554DOI
  21. Wen, Z., Yin, W., Zhang, Y., , Math. Programm. Comput. 4 (2012), 333-361. MR3006618DOI
  22. Xu, F., He, G., New algorithms for nonnegative matrix completion., Pacific J. Optim. 11 (2015), 459-469. MR3384550
  23. Yang, S., Liu, Q., Wang, J., , IEEE Trans. Automat. Control 62 (2016), 3461-3467. MR3669466DOI
  24. Yi, P., Hong, Y., Liu, F., , Systems Control Lett. 83 (2015), 45-52. Zbl1327.93033MR3373270DOI
  25. Yin, J., Gao, L., Zhang, Z. M., , In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Springer-Heidelberg, Berlin 2014, pp. 337-352. DOI
  26. Yuan, D., Ho, D. W. C., Xu, S., , IEEE Trans. Cybernet. 46 (2015), 2109-2118. DOI
  27. Zeng, X., Cao, K., , Kybernetika 53 (2017), 803-819. MR3750104DOI
  28. Zeng, X., Yi, P., Hong, Y., , IEEE Trans. Automat. Control 62 (2016), 5227-5233. MR3708893DOI
  29. Zeng, X., Liang, S., Hong, Y., Chen, J., , IEEE Trans. Automat. Control 64 (2019), 1858-1873. MR3951032DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.