Eventually semisimple weak $FI$-extending modules

Figen Takıl Mutlu; Adnan Tercan; Ramazan Yaşar

Mathematica Bohemica (2023)

  • Volume: 148, Issue: 2, page 211-222
  • ISSN: 0862-7959

Abstract

top
In this article, we study modules with the weak $FI$-extending property. We prove that if $M$ satisfies weak $FI$-extending, pseudo duo, $C_3$ properties and $M/{\rm Soc} M$ has finite uniform dimension then $M$ decomposes into a direct sum of a semisimple submodule and a submodule of finite uniform dimension. In particular, if $M$ satisfies the weak $FI$-extending, pseudo duo, $C_3$ properties and ascending (or descending) chain condition on essential submodules then $M=M_1\oplus M_2$ for some semisimple submodule $M_1$ and Noetherian (or Artinian, respectively) submodule $M_2$. Moreover, we show that a nonsingular weak $CS$ (or weak $C_{11}^*$, or weak $FI$) module has a direct summand which essentially contains the socle of the module and is a $CS$ (or $C_{11}$, or $FI$-extending, respectively) module.

How to cite

top

Takıl Mutlu, Figen, Tercan, Adnan, and Yaşar, Ramazan. "Eventually semisimple weak $FI$-extending modules." Mathematica Bohemica 148.2 (2023): 211-222. <http://eudml.org/doc/299550>.

@article{TakılMutlu2023,
abstract = {In this article, we study modules with the weak $FI$-extending property. We prove that if $M$ satisfies weak $FI$-extending, pseudo duo, $C_3$ properties and $M/\{\rm Soc\} M$ has finite uniform dimension then $M$ decomposes into a direct sum of a semisimple submodule and a submodule of finite uniform dimension. In particular, if $M$ satisfies the weak $FI$-extending, pseudo duo, $C_3$ properties and ascending (or descending) chain condition on essential submodules then $M=M_1\oplus M_2$ for some semisimple submodule $M_1$ and Noetherian (or Artinian, respectively) submodule $M_2$. Moreover, we show that a nonsingular weak $CS$ (or weak $C_\{11\}^*$, or weak $FI$) module has a direct summand which essentially contains the socle of the module and is a $CS$ (or $C_\{11\}$, or $FI$-extending, respectively) module.},
author = {Takıl Mutlu, Figen, Tercan, Adnan, Yaşar, Ramazan},
journal = {Mathematica Bohemica},
language = {eng},
number = {2},
pages = {211-222},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Eventually semisimple weak $FI$-extending modules},
url = {http://eudml.org/doc/299550},
volume = {148},
year = {2023},
}

TY - JOUR
AU - Takıl Mutlu, Figen
AU - Tercan, Adnan
AU - Yaşar, Ramazan
TI - Eventually semisimple weak $FI$-extending modules
JO - Mathematica Bohemica
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 148
IS - 2
SP - 211
EP - 222
AB - In this article, we study modules with the weak $FI$-extending property. We prove that if $M$ satisfies weak $FI$-extending, pseudo duo, $C_3$ properties and $M/{\rm Soc} M$ has finite uniform dimension then $M$ decomposes into a direct sum of a semisimple submodule and a submodule of finite uniform dimension. In particular, if $M$ satisfies the weak $FI$-extending, pseudo duo, $C_3$ properties and ascending (or descending) chain condition on essential submodules then $M=M_1\oplus M_2$ for some semisimple submodule $M_1$ and Noetherian (or Artinian, respectively) submodule $M_2$. Moreover, we show that a nonsingular weak $CS$ (or weak $C_{11}^*$, or weak $FI$) module has a direct summand which essentially contains the socle of the module and is a $CS$ (or $C_{11}$, or $FI$-extending, respectively) module.
LA - eng
UR - http://eudml.org/doc/299550
ER -

References

top
  1. Anderson, F. W., Fuller, K. R., 10.1007/978-1-4612-4418-9, Graduate Texts in Mathematics 13. Springer, New York (1992). (1992) Zbl0765.16001MR1245487DOI10.1007/978-1-4612-4418-9
  2. Armendariz, E. P., 10.1080/00927878008822460, Commun. Algebra 8 (1980), 299-308. (1980) Zbl0444.16015MR0558116DOI10.1080/00927878008822460
  3. Birkenmeier, G. F., Călugăreanu, G., Fuchs, L., Goeters, H. P., 10.1081/AGB-100001532, Commun. Algebra 29 (2001), 673-685. (2001) Zbl0992.20039MR1841990DOI10.1081/AGB-100001532
  4. Birkenmeier, G. F., Müller, B. J., Rizvi, S. T., 10.1080/00927870209342387, Commun. Algebra 30 (2002), 1395-1415. (2002) Zbl1006.16010MR1892606DOI10.1080/00927870209342387
  5. Birkenmeier, G. F., Park, J. K., Rizvi, S. T., 10.1007/978-0-387-92716-9, Birkhäuser, New York (2013). (2013) Zbl1291.16001MR3099829DOI10.1007/978-0-387-92716-9
  6. Camillo, V., Yousif, M. F., 10.1080/00927879108824160, Commun. Algebra 19 (1991), 655-662. (1991) Zbl0718.16006MR1100368DOI10.1080/00927879108824160
  7. Dung, N. V., Huynh, D. V., Smith, P. F., Wisbauer, R., Extending Modules, Pitman Research Notes in Mathematics Series 313. Longman, Harlow (1994),\99999DOI99999 10.1201/9780203756331 . (1994) Zbl0841.16001MR1312366
  8. Goodearl, K. R., 10.1090/memo/0124, Mem. Am. Math. Soc. 124 (1972), 89 pages. (1972) Zbl0242.16018MR0340335DOI10.1090/memo/0124
  9. Goodearl, K. R., Ring Theory: Nonsingular Rings and Modules, Pure and Applied Mathematics, Marcel Dekker 33. Marcel Dekker, New York (1976). (1976) Zbl0336.16001MR0429962
  10. Kaplansky, I., Infinite Abelian Groups, University of Michigan Press, Ann Arbor (1969). (1969) Zbl0194.04402MR0233887
  11. Smith, P. F., 10.1007/BFb0091255, Non-Commutative Ring Theory Lecture Notes in Mathematics 1448. Springer, Berlin (1990), 99-115. (1990) Zbl0714.16007MR1084626DOI10.1007/BFb0091255
  12. Smith, P. F., Modules with many direct summands, Osaka J. Math. 27 (1990), 253-264. (1990) Zbl0703.16007MR1066623
  13. Smith, P. F., Tercan, A., 10.1080/00927879308824655, Commun. Algebra 21 (1993), 1809-1847. (1993) Zbl0779.16002MR1215548DOI10.1080/00927879308824655
  14. Smith, P. F., Tercan, A., Direct summands of modules which satisfy $(C_{11})$, Algebra Colloq. 11 (2004), 231-237. (2004) Zbl1075.16002MR2058772
  15. Tercan, A., 10.1080/00927879508825228, Commun. Algebra 23 (1995), 405-419. (1995) Zbl0820.16001MR1311796DOI10.1080/00927879508825228
  16. Tercan, A., 10.11650/twjm/1500574991, Taiwanese J. Math. 5 (2001), 731-738. (2001) Zbl1015.16001MR1870043DOI10.11650/twjm/1500574991
  17. Tercan, A., Eventually weak $(C_{11})$ modules and matrix $(C_{11})$ rings, Southeast Asian Bull. Math. 27 (2003), 729-737. (2003) Zbl1063.16006MR2045380
  18. Tercan, A., Yaşar, R., 10.5666/KMJ.2021.61.2.239, Kyungpook J. Math. 61 (2021), 239-248. (2021) Zbl07445263MR4284189DOI10.5666/KMJ.2021.61.2.239
  19. Tercan, A., Yücel, C. C., 10.1007/978-3-0348-0952-8, Frontiers in Mathematics. Birkhäuser, Basel (2016). (2016) Zbl1368.16002MR3468915DOI10.1007/978-3-0348-0952-8
  20. Yaşar, R., 10.3906/mat-1906-36, Turk. J. Math. 43 (2019), 2327-2336. (2019) Zbl1431.16006MR4020392DOI10.3906/mat-1906-36

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.