Eventually semisimple weak $FI$-extending modules
Figen Takıl Mutlu; Adnan Tercan; Ramazan Yaşar
Mathematica Bohemica (2023)
- Volume: 148, Issue: 2, page 211-222
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topTakıl Mutlu, Figen, Tercan, Adnan, and Yaşar, Ramazan. "Eventually semisimple weak $FI$-extending modules." Mathematica Bohemica 148.2 (2023): 211-222. <http://eudml.org/doc/299550>.
@article{TakılMutlu2023,
abstract = {In this article, we study modules with the weak $FI$-extending property. We prove that if $M$ satisfies weak $FI$-extending, pseudo duo, $C_3$ properties and $M/\{\rm Soc\} M$ has finite uniform dimension then $M$ decomposes into a direct sum of a semisimple submodule and a submodule of finite uniform dimension. In particular, if $M$ satisfies the weak $FI$-extending, pseudo duo, $C_3$ properties and ascending (or descending) chain condition on essential submodules then $M=M_1\oplus M_2$ for some semisimple submodule $M_1$ and Noetherian (or Artinian, respectively) submodule $M_2$. Moreover, we show that a nonsingular weak $CS$ (or weak $C_\{11\}^*$, or weak $FI$) module has a direct summand which essentially contains the socle of the module and is a $CS$ (or $C_\{11\}$, or $FI$-extending, respectively) module.},
author = {Takıl Mutlu, Figen, Tercan, Adnan, Yaşar, Ramazan},
journal = {Mathematica Bohemica},
language = {eng},
number = {2},
pages = {211-222},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Eventually semisimple weak $FI$-extending modules},
url = {http://eudml.org/doc/299550},
volume = {148},
year = {2023},
}
TY - JOUR
AU - Takıl Mutlu, Figen
AU - Tercan, Adnan
AU - Yaşar, Ramazan
TI - Eventually semisimple weak $FI$-extending modules
JO - Mathematica Bohemica
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 148
IS - 2
SP - 211
EP - 222
AB - In this article, we study modules with the weak $FI$-extending property. We prove that if $M$ satisfies weak $FI$-extending, pseudo duo, $C_3$ properties and $M/{\rm Soc} M$ has finite uniform dimension then $M$ decomposes into a direct sum of a semisimple submodule and a submodule of finite uniform dimension. In particular, if $M$ satisfies the weak $FI$-extending, pseudo duo, $C_3$ properties and ascending (or descending) chain condition on essential submodules then $M=M_1\oplus M_2$ for some semisimple submodule $M_1$ and Noetherian (or Artinian, respectively) submodule $M_2$. Moreover, we show that a nonsingular weak $CS$ (or weak $C_{11}^*$, or weak $FI$) module has a direct summand which essentially contains the socle of the module and is a $CS$ (or $C_{11}$, or $FI$-extending, respectively) module.
LA - eng
UR - http://eudml.org/doc/299550
ER -
References
top- Anderson, F. W., Fuller, K. R., 10.1007/978-1-4612-4418-9, Graduate Texts in Mathematics 13. Springer, New York (1992). (1992) Zbl0765.16001MR1245487DOI10.1007/978-1-4612-4418-9
- Armendariz, E. P., 10.1080/00927878008822460, Commun. Algebra 8 (1980), 299-308. (1980) Zbl0444.16015MR0558116DOI10.1080/00927878008822460
- Birkenmeier, G. F., Călugăreanu, G., Fuchs, L., Goeters, H. P., 10.1081/AGB-100001532, Commun. Algebra 29 (2001), 673-685. (2001) Zbl0992.20039MR1841990DOI10.1081/AGB-100001532
- Birkenmeier, G. F., Müller, B. J., Rizvi, S. T., 10.1080/00927870209342387, Commun. Algebra 30 (2002), 1395-1415. (2002) Zbl1006.16010MR1892606DOI10.1080/00927870209342387
- Birkenmeier, G. F., Park, J. K., Rizvi, S. T., 10.1007/978-0-387-92716-9, Birkhäuser, New York (2013). (2013) Zbl1291.16001MR3099829DOI10.1007/978-0-387-92716-9
- Camillo, V., Yousif, M. F., 10.1080/00927879108824160, Commun. Algebra 19 (1991), 655-662. (1991) Zbl0718.16006MR1100368DOI10.1080/00927879108824160
- Dung, N. V., Huynh, D. V., Smith, P. F., Wisbauer, R., Extending Modules, Pitman Research Notes in Mathematics Series 313. Longman, Harlow (1994),\99999DOI99999 10.1201/9780203756331 . (1994) Zbl0841.16001MR1312366
- Goodearl, K. R., 10.1090/memo/0124, Mem. Am. Math. Soc. 124 (1972), 89 pages. (1972) Zbl0242.16018MR0340335DOI10.1090/memo/0124
- Goodearl, K. R., Ring Theory: Nonsingular Rings and Modules, Pure and Applied Mathematics, Marcel Dekker 33. Marcel Dekker, New York (1976). (1976) Zbl0336.16001MR0429962
- Kaplansky, I., Infinite Abelian Groups, University of Michigan Press, Ann Arbor (1969). (1969) Zbl0194.04402MR0233887
- Smith, P. F., 10.1007/BFb0091255, Non-Commutative Ring Theory Lecture Notes in Mathematics 1448. Springer, Berlin (1990), 99-115. (1990) Zbl0714.16007MR1084626DOI10.1007/BFb0091255
- Smith, P. F., Modules with many direct summands, Osaka J. Math. 27 (1990), 253-264. (1990) Zbl0703.16007MR1066623
- Smith, P. F., Tercan, A., 10.1080/00927879308824655, Commun. Algebra 21 (1993), 1809-1847. (1993) Zbl0779.16002MR1215548DOI10.1080/00927879308824655
- Smith, P. F., Tercan, A., Direct summands of modules which satisfy $(C_{11})$, Algebra Colloq. 11 (2004), 231-237. (2004) Zbl1075.16002MR2058772
- Tercan, A., 10.1080/00927879508825228, Commun. Algebra 23 (1995), 405-419. (1995) Zbl0820.16001MR1311796DOI10.1080/00927879508825228
- Tercan, A., 10.11650/twjm/1500574991, Taiwanese J. Math. 5 (2001), 731-738. (2001) Zbl1015.16001MR1870043DOI10.11650/twjm/1500574991
- Tercan, A., Eventually weak $(C_{11})$ modules and matrix $(C_{11})$ rings, Southeast Asian Bull. Math. 27 (2003), 729-737. (2003) Zbl1063.16006MR2045380
- Tercan, A., Yaşar, R., 10.5666/KMJ.2021.61.2.239, Kyungpook J. Math. 61 (2021), 239-248. (2021) Zbl07445263MR4284189DOI10.5666/KMJ.2021.61.2.239
- Tercan, A., Yücel, C. C., 10.1007/978-3-0348-0952-8, Frontiers in Mathematics. Birkhäuser, Basel (2016). (2016) Zbl1368.16002MR3468915DOI10.1007/978-3-0348-0952-8
- Yaşar, R., 10.3906/mat-1906-36, Turk. J. Math. 43 (2019), 2327-2336. (2019) Zbl1431.16006MR4020392DOI10.3906/mat-1906-36
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.