Recollements induced by good (co)silting dg-modules

Rongmin Zhu; Jiaqun Wei

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 2, page 453-473
  • ISSN: 0011-4642

Abstract

top
Let U be a dg- A -module, B the endomorphism dg-algebra of U . We know that if U is a good silting object, then there exist a dg-algebra C and a recollement among the derived categories 𝐃 ( C , d ) of C , 𝐃 ( B , d ) of B and 𝐃 ( A , d ) of A . We investigate the condition under which the induced dg-algebra C is weak nonpositive. In order to deal with both silting and cosilting dg-modules consistently, the notion of weak silting dg-modules is introduced. Thus, similar results for good cosilting dg-modules are obtained. Finally, some applications are given related to good 2-term silting complexes, good tilting complexes and modules.

How to cite

top

Zhu, Rongmin, and Wei, Jiaqun. "Recollements induced by good (co)silting dg-modules." Czechoslovak Mathematical Journal 73.2 (2023): 453-473. <http://eudml.org/doc/299555>.

@article{Zhu2023,
abstract = {Let $U$ be a dg-$A$-module, $B$ the endomorphism dg-algebra of $U$. We know that if $U$ is a good silting object, then there exist a dg-algebra $C$ and a recollement among the derived categories $\{\mathbf \{D\}\}(C,d)$ of $C$, $\{\mathbf \{D\}\}(B,d)$ of $B$ and $\{\mathbf \{D\}\}(A,d)$ of $A$. We investigate the condition under which the induced dg-algebra $C$ is weak nonpositive. In order to deal with both silting and cosilting dg-modules consistently, the notion of weak silting dg-modules is introduced. Thus, similar results for good cosilting dg-modules are obtained. Finally, some applications are given related to good 2-term silting complexes, good tilting complexes and modules.},
author = {Zhu, Rongmin, Wei, Jiaqun},
journal = {Czechoslovak Mathematical Journal},
keywords = {silting object; dg-algebra; cosilting dg-module; recollement},
language = {eng},
number = {2},
pages = {453-473},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Recollements induced by good (co)silting dg-modules},
url = {http://eudml.org/doc/299555},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Zhu, Rongmin
AU - Wei, Jiaqun
TI - Recollements induced by good (co)silting dg-modules
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 2
SP - 453
EP - 473
AB - Let $U$ be a dg-$A$-module, $B$ the endomorphism dg-algebra of $U$. We know that if $U$ is a good silting object, then there exist a dg-algebra $C$ and a recollement among the derived categories ${\mathbf {D}}(C,d)$ of $C$, ${\mathbf {D}}(B,d)$ of $B$ and ${\mathbf {D}}(A,d)$ of $A$. We investigate the condition under which the induced dg-algebra $C$ is weak nonpositive. In order to deal with both silting and cosilting dg-modules consistently, the notion of weak silting dg-modules is introduced. Thus, similar results for good cosilting dg-modules are obtained. Finally, some applications are given related to good 2-term silting complexes, good tilting complexes and modules.
LA - eng
KW - silting object; dg-algebra; cosilting dg-module; recollement
UR - http://eudml.org/doc/299555
ER -

References

top
  1. Hügel, L. Angeleri, 10.1112/blms.12264, Bull. Lond. Math. Soc. 51 (2019), 658-690. (2019) Zbl07118830MR3990384DOI10.1112/blms.12264
  2. Hügel, L. Angeleri, Herbera, D., 10.1512/iumj.2008.57.3325, Indiana Univ. Math. J. 57 (2008), 2459-2517. (2008) Zbl1206.16002MR2463975DOI10.1512/iumj.2008.57.3325
  3. Hügel, L. Angeleri, Marks, F., Vitória, J., 10.1093/imrn/rnv191, Int. Math. Res. Not. 2016 (2016), 1251-1284. (2016) Zbl1367.16005MR3493448DOI10.1093/imrn/rnv191
  4. Bazzoni, S., 10.1090/S0002-9939-09-10120-X, Proc. Am. Math. Soc. 138 (2010), 533-544. (2010) Zbl1233.16008MR2557170DOI10.1090/S0002-9939-09-10120-X
  5. Bazzoni, S., Mantese, F., Tonolo, A., 10.1090/S0002-9939-2011-10900-6, Proc. Am. Math. Soc. 139 (2011), 4225-4234. (2011) Zbl1232.16004MR2823068DOI10.1090/S0002-9939-2011-10900-6
  6. Bazzoni, S., Pavarin, A., 10.1016/j.jalgebra.2013.03.037, J. Algebra 388 (2013), 338-363. (2013) Zbl1303.16013MR3061693DOI10.1016/j.jalgebra.2013.03.037
  7. Bazzoni, S., Šťovíček, J., 10.1016/j.aim.2016.09.028, Adv. Math. 305 (2017), 351-401. (2017) Zbl1386.13043MR3570139DOI10.1016/j.aim.2016.09.028
  8. Becker, H., 10.1016/j.aim.2013.11.016, Adv. Math. 254 (2014), 187-232. (2014) Zbl1348.16009MR3161097DOI10.1016/j.aim.2013.11.016
  9. Beilinson, A. A., Bernstein, J., Deligne, P., Faisceaux pervers, Analysis and Topology on Singular Spaces. I Astérisque 100. Société Mathématique de France, Paris (1982), 5-171 French. (1982) Zbl0536.14011MR0751966
  10. Beligiannis, A., Reiten, I., 10.1090/memo/0883, Memoirs of the American Mathematical Society 883. AMS, Providence (2007). (2007) Zbl1124.18005MR2327478DOI10.1090/memo/0883
  11. Breaz, S., Modoi, G. C., Derived equivalences induced by good silting complexes, Available at https://arxiv.org/abs/1707.07353 (2017), 14 pages. (2017) 
  12. Breaz, S., Modoi, G. C., 10.1007/s10468-019-09930-3, Algebr. Represent. Theory 23 (2020), 2113-2129. (2020) Zbl1471.16011MR4165012DOI10.1007/s10468-019-09930-3
  13. Chen, H., Xi, C., 10.1112/plms/pdr056, Proc. Lond. Math. Soc. (3) 104 (2012), 959-996. (2012) Zbl1255.18013MR2928333DOI10.1112/plms/pdr056
  14. Chen, H., Xi, C., 10.2969/jmsj/78477847, J. Math. Soc. Japan 71 (2019), 515-554. (2019) Zbl1433.18007MR3943449DOI10.2969/jmsj/78477847
  15. Hovey, M., Palmieri, J. H., Strickland, N. P., 10.1090/memo/0610, Memoirs or the American Mathematical Society 610. AMS, Providence (1997). (1997) Zbl0881.55001MR1388895DOI10.1090/memo/0610
  16. Keller, B., 10.24033/asens.1689, Ann. Sci. Éc. Norm. Supér. (4) 27 (1994), 63-102. (1994) Zbl0799.18007MR1258406DOI10.24033/asens.1689
  17. Keller, B., 10.1017/CBO9780511735134.005, Handbook of Tilting Theory London Mathematical Society Lecture Note Series 332. Cambridge University Press, London (2007), 49-104. (2007) MR2384608DOI10.1017/CBO9780511735134.005
  18. Marks, F., Vitória, J., 10.1016/j.jalgebra.2017.12.031, J. Algebra 501 (2018), 526-544. (2018) Zbl1441.16011MR3768148DOI10.1016/j.jalgebra.2017.12.031
  19. Nicolás, P., On Torsion Torsionfree Triples: Ph.D. Thesis, Available at https://arxiv.org/abs/0801.0507 (2008), 184 pages. (2008) 
  20. Nicolás, P., Saorín, M., 10.1016/j.jalgebra.2009.04.035, J. Algebra 322 (2009), 1220-1250. (2009) Zbl1187.18008MR2537682DOI10.1016/j.jalgebra.2009.04.035
  21. Nicolás, P., Saorín, M., 10.1007/s10485-017-9495-x, Appl. Categ. Struct. 26 (2018), 309-368. (2018) Zbl1396.18009MR3770911DOI10.1007/s10485-017-9495-x
  22. Nicolás, P., Saorín, M., Zvonareva, A., 10.1016/j.jpaa.2018.07.016, J. Pure Appl. Algebra 223 (2019), 2273-2319. (2019) Zbl1436.18013MR3906550DOI10.1016/j.jpaa.2018.07.016
  23. Pauksztello, D., 10.1080/00927870802623344, Commun. Algebra 37 (2009), 2337-2350. (2009) Zbl1189.18005MR2536923DOI10.1080/00927870802623344
  24. Schwede, S., Shipley, B. E., 10.1112/S002461150001220X, Proc. Lond. Math. Soc., III. Ser. 80 (2000), 491-511. (2000) Zbl1026.18004MR1734325DOI10.1112/S002461150001220X
  25. Authors, The Stacks Project, Stacks Project, an open source textbook and reference work on algebraic geometry, Available at https://stacks.math.columbia.edu/tag/04jd. 
  26. Authors, The Stacks Project, Stacks Project, an open source textbook and reference work on algebraic geometry, Available at https://stacks.math.columbia.edu/tag/09ks. 
  27. Trlifaj, J., Pospíšil, D., 10.1090/conm/480, Rings, Modules and Representations Contemporary Mathematics 480. AMS, Providence (2009), 319-334. (2009) Zbl1180.13034MR2508160DOI10.1090/conm/480
  28. Wei, J., 10.1007/s11856-012-0093-1, Isr. J. Math. 194 (2013), 871-893. (2013) Zbl1286.16011MR3047094DOI10.1007/s11856-012-0093-1
  29. Yang, D., 10.1090/S0002-9939-2011-10898-0, Proc. Am. Math. Soc. 140 (2012), 83-91. (2012) Zbl1244.18013MR2833519DOI10.1090/S0002-9939-2011-10898-0
  30. Yekutieli, A., 10.1017/9781108292825, Cambridge Studies in Advanced Mathematics 183. Cambridge University Press, Cambridge (2020). (2020) Zbl1444.18001MR3971537DOI10.1017/9781108292825

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.