Existence and stability results of nonlinear higher-order wave equation with a nonlinear source term and a delay term
Mama Abdelli; Abderrahmane Beniani; Nadia Mezouar; Ahmed Chahtou
Mathematica Bohemica (2023)
- Volume: 148, Issue: 1, page 11-34
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topAbdelli, Mama, et al. "Existence and stability results of nonlinear higher-order wave equation with a nonlinear source term and a delay term." Mathematica Bohemica 148.1 (2023): 11-34. <http://eudml.org/doc/299556>.
@article{Abdelli2023,
abstract = {We consider the initial-boundary value problem for a nonlinear higher-order nonlinear hyperbolic equation in a bounded domain. The existence of global weak solutions for this problem is established by using the potential well theory combined with Faedo-Galarkin method. We also established the asymptotic behavior of global solutions as $t\rightarrow \infty $ by applying the Lyapunov method.},
author = {Abdelli, Mama, Beniani, Abderrahmane, Mezouar, Nadia, Chahtou, Ahmed},
journal = {Mathematica Bohemica},
keywords = {nonlinear higher-order hyperbolic equation; nonlinear source term; global existence},
language = {eng},
number = {1},
pages = {11-34},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence and stability results of nonlinear higher-order wave equation with a nonlinear source term and a delay term},
url = {http://eudml.org/doc/299556},
volume = {148},
year = {2023},
}
TY - JOUR
AU - Abdelli, Mama
AU - Beniani, Abderrahmane
AU - Mezouar, Nadia
AU - Chahtou, Ahmed
TI - Existence and stability results of nonlinear higher-order wave equation with a nonlinear source term and a delay term
JO - Mathematica Bohemica
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 148
IS - 1
SP - 11
EP - 34
AB - We consider the initial-boundary value problem for a nonlinear higher-order nonlinear hyperbolic equation in a bounded domain. The existence of global weak solutions for this problem is established by using the potential well theory combined with Faedo-Galarkin method. We also established the asymptotic behavior of global solutions as $t\rightarrow \infty $ by applying the Lyapunov method.
LA - eng
KW - nonlinear higher-order hyperbolic equation; nonlinear source term; global existence
UR - http://eudml.org/doc/299556
ER -
References
top- Arnold, V. I., 10.1007/978-1-4757-1693-1, Graduate Texts in Mathematics 60. Springer, New York (1978). (1978) Zbl0386.70001MR0690288DOI10.1007/978-1-4757-1693-1
- Benaissa, A., Louhibi, N., 10.1515/gmj-2013-0006, Georgian Math. J. 20 (2013), 1-24. (2013) Zbl06152709MR3037074DOI10.1515/gmj-2013-0006
- Brenner, P., Wahl, W. von, 10.1007/BF01258907, Math. Z. 176 (1981), 87-121. (1981) Zbl0457.35059MR0606174DOI10.1007/BF01258907
- Komornik, V., Exact Controllability and Stabilization: The Multiplier Method, Research in Applied Mathematics 36. Wiley, Chichester (1994). (1994) Zbl0937.93003MR1359765
- Lions, J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Etudes mathematiques. Dunod, Paris (1969), French. (1969) Zbl0189.40603MR0259693
- Liu, K., 10.1137/S0363012995284928, SIAM J. Control Optim. 35 (1997), 1574-1590. (1997) Zbl0891.93016MR1466917DOI10.1137/S0363012995284928
- Nakao, M., 10.2969/jmsj/03030375, J. Math. Soc. Japan 30 (1978), 375-394. (1978) Zbl0386.35004MR0492914DOI10.2969/jmsj/03030375
- Nakao, M., Kuwahara, H., Decay estimates for some semilinear wave equations with degenerate dissipative terms, Funkc. Ekvacioj, Ser. Int. 30 (1987), 135-145. (1987) Zbl0632.35046MR0915268
- Nicaise, S., Pignotti, C., 10.1137/060648891, SIAM J. Control Optim. 45 (2006), 1561-1585. (2006) Zbl1180.35095MR2272156DOI10.1137/060648891
- Payne, L. E., Sattinger, D. H., 10.1007/BF02761595, Isr. J. Math. 22 (1975), 273-303. (1975) Zbl0317.35059MR0402291DOI10.1007/BF02761595
- Pecher, H., 10.1007/BF01214167, Math. Z. 140 (1974), 263-279 German. (1974) Zbl0287.35069MR0364891DOI10.1007/BF01214167
- Wang, B., 10.1016/j.jmaa.2004.03.050, J. Math. Anal. Appl. 296 (2004), 74-96. (2004) Zbl1060.35099MR2070494DOI10.1016/j.jmaa.2004.03.050
- Yanbing, Y., Ahmed, M. S., Lanlan, Q., Runzhang, X., 10.7494/opmath.2019.39.2.297, Opusc. Math. 39 (2019), 297-313. (2019) Zbl1437.35454MR3897819DOI10.7494/opmath.2019.39.2.297
- Ye, Y., 10.1155/2010/394859, J. Inequal. Appl. 2010 (2010), Article ID 394859, 14 pages. (2010) Zbl1190.35161MR2600191DOI10.1155/2010/394859
- Zuazua, E., 10.1080/03605309908820684, Commun. Partial Differ. Equations 15 (1990), 205-235. (1990) Zbl0716.35010MR1032629DOI10.1080/03605309908820684
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.