Global Classical Solutions of Nonlinear Wave Equations.
Mathematische Zeitschrift (1981)
- Volume: 176, page 87-122
- ISSN: 0025-5874; 1432-1823
Access Full Article
topHow to cite
topWahl, Wolf von, and Brenner, Philip. "Global Classical Solutions of Nonlinear Wave Equations.." Mathematische Zeitschrift 176 (1981): 87-122. <http://eudml.org/doc/183633>.
@article{Wahl1981,
author = {Wahl, Wolf von, Brenner, Philip},
journal = {Mathematische Zeitschrift},
keywords = {existence of global classical and global strong solutions; nonlinear wave equations; selfadjoint positive elliptic operator; homogeneous initial- boundary value problem; Cauchy problem; growth conditions; Banach's fixed point theorem; Tychonoff's fixed point theorem; weak topology; estimates; fractional order Besov spaces},
pages = {87-122},
title = {Global Classical Solutions of Nonlinear Wave Equations.},
url = {http://eudml.org/doc/183633},
volume = {176},
year = {1981},
}
TY - JOUR
AU - Wahl, Wolf von
AU - Brenner, Philip
TI - Global Classical Solutions of Nonlinear Wave Equations.
JO - Mathematische Zeitschrift
PY - 1981
VL - 176
SP - 87
EP - 122
KW - existence of global classical and global strong solutions; nonlinear wave equations; selfadjoint positive elliptic operator; homogeneous initial- boundary value problem; Cauchy problem; growth conditions; Banach's fixed point theorem; Tychonoff's fixed point theorem; weak topology; estimates; fractional order Besov spaces
UR - http://eudml.org/doc/183633
ER -
Citations in EuDML Documents
top- J. Ginibre, G. Velo, On the global Cauchy problem for some non linear Schrödinger equations
- Michael Struwe, Globally regular solutions to the Klein-Gordon equation
- Gilles Lebeau, Perte de régularité pour les équations d’ondes sur-critiques
- P. Brenner, On strong globbal solutions of nonlinear hyperbolic equations
- Jalal Shatah, Regularity results for semilinear and geometric wave equations
- Michael Beals, Max Bezard, Équations de champs non linéaires: Des solutions non nécessairement bornées
- Jean Ginibre, Théorie de la diffusion pour des équations semi linéaires
- J. Ginibre, G. Velo, The global Cauchy problem for the non linear Klein-Gordon equation-II
- Claude Zuily, Solutions en grand temps d'équations d'ondes non linéaires
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.