On the domination of triangulated discs

Noor A'lawiah Abd Aziz; Nader Jafari Rad; Hailiza Kamarulhaili

Mathematica Bohemica (2023)

  • Volume: 148, Issue: 4, page 555-560
  • ISSN: 0862-7959

Abstract

top
Let G be a 3 -connected triangulated disc of order n with the boundary cycle C of the outer face of G . Tokunaga (2013) conjectured that G has a dominating set of cardinality at most 1 4 ( n + 2 ) . This conjecture is proved in Tokunaga (2020) for G - C being a tree. In this paper we prove the above conjecture for G - C being a unicyclic graph. We also deduce some bounds for the double domination number, total domination number and double total domination number in triangulated discs.

How to cite

top

Abd Aziz, Noor A'lawiah, Jafari Rad, Nader, and Kamarulhaili, Hailiza. "On the domination of triangulated discs." Mathematica Bohemica 148.4 (2023): 555-560. <http://eudml.org/doc/299557>.

@article{AbdAziz2023,
abstract = {Let $G$ be a $3$-connected triangulated disc of order $n$ with the boundary cycle $C$ of the outer face of $G$. Tokunaga (2013) conjectured that $G$ has a dominating set of cardinality at most $\frac\{1\}\{4\}(n+2)$. This conjecture is proved in Tokunaga (2020) for $G-C$ being a tree. In this paper we prove the above conjecture for $G-C$ being a unicyclic graph. We also deduce some bounds for the double domination number, total domination number and double total domination number in triangulated discs.},
author = {Abd Aziz, Noor A'lawiah, Jafari Rad, Nader, Kamarulhaili, Hailiza},
journal = {Mathematica Bohemica},
keywords = {domination; double domination; total domination; double total domination; planar graph; triangulated disc},
language = {eng},
number = {4},
pages = {555-560},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the domination of triangulated discs},
url = {http://eudml.org/doc/299557},
volume = {148},
year = {2023},
}

TY - JOUR
AU - Abd Aziz, Noor A'lawiah
AU - Jafari Rad, Nader
AU - Kamarulhaili, Hailiza
TI - On the domination of triangulated discs
JO - Mathematica Bohemica
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 148
IS - 4
SP - 555
EP - 560
AB - Let $G$ be a $3$-connected triangulated disc of order $n$ with the boundary cycle $C$ of the outer face of $G$. Tokunaga (2013) conjectured that $G$ has a dominating set of cardinality at most $\frac{1}{4}(n+2)$. This conjecture is proved in Tokunaga (2020) for $G-C$ being a tree. In this paper we prove the above conjecture for $G-C$ being a unicyclic graph. We also deduce some bounds for the double domination number, total domination number and double total domination number in triangulated discs.
LA - eng
KW - domination; double domination; total domination; double total domination; planar graph; triangulated disc
UR - http://eudml.org/doc/299557
ER -

References

top
  1. Bermudo, S., Sanchéz, J. L., Sigarreta, J. M., 10.1007/s10998-017-0191-2, Period. Math. Hung. 75 (2017), 255-267. (2017) Zbl1413.05279MR3718519DOI10.1007/s10998-017-0191-2
  2. Blidia, M., Chellali, M., Haynes, T. W., 10.1016/j.disc.2006.03.061, Discrete Math. 306 (2006), 1840-1845. (2006) Zbl1100.05068MR2251565DOI10.1016/j.disc.2006.03.061
  3. Cabrera-Martínez, A., 10.1016/j.dam.2022.03.022, Discrete Appl. Math. 315 (2022), 97-103. (2022) Zbl07516299MR4407663DOI10.1016/j.dam.2022.03.022
  4. Cabrera-Martínez, A., Rodríguez-Velázquez, J. A., 10.1016/j.dam.2021.05.011, Discrete Appl. Math. 300 (2021), 107-111. (2021) Zbl1465.05124MR4264160DOI10.1016/j.dam.2021.05.011
  5. Campos, C. N., Wakabayashi, Y., 10.1016/j.dam.2012.08.023, Discrete Appl. Math. 161 (2013), 330-335. (2013) Zbl1254.05136MR2998434DOI10.1016/j.dam.2012.08.023
  6. Fernau, H., Rodríguez-Velázquez, J. A., Sigarreta, J. M., Global powerful r -alliances and total k -domination in graphs, Util. Math. 98 (2015), 127-147. (2015) Zbl1343.05115MR3410888
  7. Harant, J., Henning, M. A., 10.7151/dmgt.1256, Discuss. Math., Graph Theory 25 (2005), 29-34. (2005) Zbl1073.05049MR2152046DOI10.7151/dmgt.1256
  8. Harary, F., Haynes, T. W., Double domination in graphs, Ars Comb. 55 (2000), 201-213. (2000) Zbl0993.05104MR1755232
  9. Haynes, T. W., Hedetniemi, S. T., Slater, P. J., 10.1201/9781482246582, Pure and Applied Mathematics, Marcel Dekker 208. Marcel Dekker, New York (1998). (1998) Zbl0890.05002MR1605684DOI10.1201/9781482246582
  10. Henning, M. A., Rad, N. Jafari, 10.1007/s00373-020-02249-7, Graphs Comb. 37 (2021), 325-336. (2021) Zbl1459.05239MR4197383DOI10.1007/s00373-020-02249-7
  11. Henning, M. A., Kazemi, A. P., 10.1016/j.dam.2010.01.009, Discrete Appl. Math. 158 (2010), 1006-1011. (2010) Zbl1210.05097MR2607047DOI10.1016/j.dam.2010.01.009
  12. Henning, M. A., Yeo, A., 10.1137/090777001, SIAM J. Discrete Math. 24 (2010), 1336-1355. (2010) Zbl1221.05254MR2735927DOI10.1137/090777001
  13. King, E. L. C., Pelsmajer, M. J., 10.1016/j.disc.2010.03.022, Discrete Math. 310 (2010), 2221-2230. (2010) Zbl1203.05120MR2659172DOI10.1016/j.disc.2010.03.022
  14. Li, Z., Zhu, E., Shao, Z., Xu, J., 10.1016/j.dam.2015.06.024, Discrete Appl. Math. 198 (2016), 164-169. (2016) Zbl1327.05263MR3426889DOI10.1016/j.dam.2015.06.024
  15. Matheson, L. R., Tarjan, R. E., 10.1006/eujc.1996.0048, Eur. J. Comb. 17 (1996), 565-568. (1996) Zbl0862.05032MR1401911DOI10.1006/eujc.1996.0048
  16. Pradhan, D., 10.1016/j.ipl.2012.07.010, Inf. Process. Lett. 112 (2012), 816-822. (2012) Zbl1248.68222MR2960327DOI10.1016/j.ipl.2012.07.010
  17. Tokunaga, S., 10.1016/j.dam.2013.06.025, Discrete Appl. Math. 161 (2013), 3097-3099. (2013) Zbl1287.05109MR3126677DOI10.1016/j.dam.2013.06.025
  18. Tokunaga, S., 10.2197/ipsjjip.28.846, J. Inf. Process. 28 (2020), 846-848. (2020) DOI10.2197/ipsjjip.28.846

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.