The minimal closed monoids for the Galois connection End - Con

Danica Jakubíková-Studenovská; Reinhard Pöschel; Sándor Radelecki

Mathematica Bohemica (2024)

  • Volume: 149, Issue: 3, page 295-303
  • ISSN: 0862-7959

Abstract

top
The minimal nontrivial endomorphism monoids M = End Con ( A , F ) of congruence lattices of algebras ( A , F ) defined on a finite set A are described. They correspond (via the Galois connection End - Con ) to the maximal nontrivial congruence lattices Con ( A , F ) investigated and characterized by the authors in previous papers. Analogous results are provided for endomorphism monoids of quasiorder lattices Quord ( A , F ) .

How to cite

top

Jakubíková-Studenovská, Danica, Pöschel, Reinhard, and Radelecki, Sándor. "The minimal closed monoids for the Galois connection ${\rm End}$-${\rm Con}$." Mathematica Bohemica 149.3 (2024): 295-303. <http://eudml.org/doc/299561>.

@article{Jakubíková2024,
abstract = {The minimal nontrivial endomorphism monoids $M=\{\rm End\}\{\rm Con\} (A,F)$ of congruence lattices of algebras $(A,F)$ defined on a finite set $A$ are described. They correspond (via the Galois connection $\{\rm End\}$-$\{\rm Con\}$) to the maximal nontrivial congruence lattices $\{\rm Con\} (A,F)$ investigated and characterized by the authors in previous papers. Analogous results are provided for endomorphism monoids of quasiorder lattices $\{\rm Quord\} (A,F)$.},
author = {Jakubíková-Studenovská, Danica, Pöschel, Reinhard, Radelecki, Sándor},
journal = {Mathematica Bohemica},
keywords = {endomorphism monoid; congruence lattice; quasiorder lattice; finite algebra},
language = {eng},
number = {3},
pages = {295-303},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The minimal closed monoids for the Galois connection $\{\rm End\}$-$\{\rm Con\}$},
url = {http://eudml.org/doc/299561},
volume = {149},
year = {2024},
}

TY - JOUR
AU - Jakubíková-Studenovská, Danica
AU - Pöschel, Reinhard
AU - Radelecki, Sándor
TI - The minimal closed monoids for the Galois connection ${\rm End}$-${\rm Con}$
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 3
SP - 295
EP - 303
AB - The minimal nontrivial endomorphism monoids $M={\rm End}{\rm Con} (A,F)$ of congruence lattices of algebras $(A,F)$ defined on a finite set $A$ are described. They correspond (via the Galois connection ${\rm End}$-${\rm Con}$) to the maximal nontrivial congruence lattices ${\rm Con} (A,F)$ investigated and characterized by the authors in previous papers. Analogous results are provided for endomorphism monoids of quasiorder lattices ${\rm Quord} (A,F)$.
LA - eng
KW - endomorphism monoid; congruence lattice; quasiorder lattice; finite algebra
UR - http://eudml.org/doc/299561
ER -

References

top
  1. Halušková, E., 10.21136/MB.2017.0056-16, Math. Bohem. 143 (2018), 161-171. (2018) Zbl1463.08003MR3831484DOI10.21136/MB.2017.0056-16
  2. Halušková, E., 10.21136/MB.2019.0128-18, Math. Bohem. 145 (2020), 401-414. (2020) Zbl1499.08011MR4221842DOI10.21136/MB.2019.0128-18
  3. Jakubíková-Studenovská, D., 10.21136/CMJ.1982.101820, Czech. Math. J. 32 (1982), 437-459. (1982) Zbl0509.08003MR0669786DOI10.21136/CMJ.1982.101820
  4. Jakubíková-Studenovská, D., 10.21136/CMJ.1983.101895, Czech. Math. J. 33 (1983), 448-466. (1983) Zbl0535.08003MR0718928DOI10.21136/CMJ.1983.101895
  5. Jakubíková-Studenovská, D., Pócs, J., Monounary Algebras, P. J. Šafárik University, Košice (2009). (2009) Zbl1181.08001
  6. Jakubíková-Studenovská, D., Pöschel, R., Radeleczki, S., 10.1007/s00012-016-0373-4, Algebra Univers. 75 (2016), 197-220. (2016) Zbl1338.08005MR3515397DOI10.1007/s00012-016-0373-4
  7. Jakubíková-Studenovská, D., Pöschel, R., Radeleczki, S., 10.1007/s00012-018-0486-z, Algebra Univers. 79 (2018), Article ID 4, 23 pages. (2018) Zbl1414.08001MR3770896DOI10.1007/s00012-018-0486-z
  8. Jakubíková-Studenovská, D., Pöschel, R., Radeleczki, S., The structure of the maximal congruence lattices of algebras on a finite set, J. Mult.-Val. Log. Soft Comput. 36 (2021), 299-320. (2021) Zbl07536105MR4578804
  9. Janičková, L., 10.1007/s00012-022-00786-1, Algebra Univers. 83 (2022), Article ID 36, 10 pages. (2022) Zbl07573924MR4462594DOI10.1007/s00012-022-00786-1
  10. Länger, H., Pöschel, R., 10.1016/0022-4049(84)90048-3, J. Pure Appl. Algebra 32 (1984), 129-142. (1984) Zbl0558.08004MR0741962DOI10.1016/0022-4049(84)90048-3
  11. Pálfy, P. P., 10.1007/BF01203365, Algebra Univers. 18 (1984), 262-273. (1984) Zbl0546.08005MR0745492DOI10.1007/BF01203365
  12. Quackenbush, R., Wolk, B., 10.1007/BF02944974, Algebra Univers. 1 (1971), 165-166. (1971) Zbl0231.06006MR0295980DOI10.1007/BF02944974

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.