The minimal closed monoids for the Galois connection -
Danica Jakubíková-Studenovská; Reinhard Pöschel; Sándor Radelecki
Mathematica Bohemica (2024)
- Volume: 149, Issue: 3, page 295-303
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topJakubíková-Studenovská, Danica, Pöschel, Reinhard, and Radelecki, Sándor. "The minimal closed monoids for the Galois connection ${\rm End}$-${\rm Con}$." Mathematica Bohemica 149.3 (2024): 295-303. <http://eudml.org/doc/299561>.
@article{Jakubíková2024,
abstract = {The minimal nontrivial endomorphism monoids $M=\{\rm End\}\{\rm Con\} (A,F)$ of congruence lattices of algebras $(A,F)$ defined on a finite set $A$ are described. They correspond (via the Galois connection $\{\rm End\}$-$\{\rm Con\}$) to the maximal nontrivial congruence lattices $\{\rm Con\} (A,F)$ investigated and characterized by the authors in previous papers. Analogous results are provided for endomorphism monoids of quasiorder lattices $\{\rm Quord\} (A,F)$.},
author = {Jakubíková-Studenovská, Danica, Pöschel, Reinhard, Radelecki, Sándor},
journal = {Mathematica Bohemica},
keywords = {endomorphism monoid; congruence lattice; quasiorder lattice; finite algebra},
language = {eng},
number = {3},
pages = {295-303},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The minimal closed monoids for the Galois connection $\{\rm End\}$-$\{\rm Con\}$},
url = {http://eudml.org/doc/299561},
volume = {149},
year = {2024},
}
TY - JOUR
AU - Jakubíková-Studenovská, Danica
AU - Pöschel, Reinhard
AU - Radelecki, Sándor
TI - The minimal closed monoids for the Galois connection ${\rm End}$-${\rm Con}$
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 3
SP - 295
EP - 303
AB - The minimal nontrivial endomorphism monoids $M={\rm End}{\rm Con} (A,F)$ of congruence lattices of algebras $(A,F)$ defined on a finite set $A$ are described. They correspond (via the Galois connection ${\rm End}$-${\rm Con}$) to the maximal nontrivial congruence lattices ${\rm Con} (A,F)$ investigated and characterized by the authors in previous papers. Analogous results are provided for endomorphism monoids of quasiorder lattices ${\rm Quord} (A,F)$.
LA - eng
KW - endomorphism monoid; congruence lattice; quasiorder lattice; finite algebra
UR - http://eudml.org/doc/299561
ER -
References
top- Halušková, E., 10.21136/MB.2017.0056-16, Math. Bohem. 143 (2018), 161-171. (2018) Zbl1463.08003MR3831484DOI10.21136/MB.2017.0056-16
- Halušková, E., 10.21136/MB.2019.0128-18, Math. Bohem. 145 (2020), 401-414. (2020) Zbl1499.08011MR4221842DOI10.21136/MB.2019.0128-18
- Jakubíková-Studenovská, D., 10.21136/CMJ.1982.101820, Czech. Math. J. 32 (1982), 437-459. (1982) Zbl0509.08003MR0669786DOI10.21136/CMJ.1982.101820
- Jakubíková-Studenovská, D., 10.21136/CMJ.1983.101895, Czech. Math. J. 33 (1983), 448-466. (1983) Zbl0535.08003MR0718928DOI10.21136/CMJ.1983.101895
- Jakubíková-Studenovská, D., Pócs, J., Monounary Algebras, P. J. Šafárik University, Košice (2009). (2009) Zbl1181.08001
- Jakubíková-Studenovská, D., Pöschel, R., Radeleczki, S., 10.1007/s00012-016-0373-4, Algebra Univers. 75 (2016), 197-220. (2016) Zbl1338.08005MR3515397DOI10.1007/s00012-016-0373-4
- Jakubíková-Studenovská, D., Pöschel, R., Radeleczki, S., 10.1007/s00012-018-0486-z, Algebra Univers. 79 (2018), Article ID 4, 23 pages. (2018) Zbl1414.08001MR3770896DOI10.1007/s00012-018-0486-z
- Jakubíková-Studenovská, D., Pöschel, R., Radeleczki, S., The structure of the maximal congruence lattices of algebras on a finite set, J. Mult.-Val. Log. Soft Comput. 36 (2021), 299-320. (2021) Zbl07536105MR4578804
- Janičková, L., 10.1007/s00012-022-00786-1, Algebra Univers. 83 (2022), Article ID 36, 10 pages. (2022) Zbl07573924MR4462594DOI10.1007/s00012-022-00786-1
- Länger, H., Pöschel, R., 10.1016/0022-4049(84)90048-3, J. Pure Appl. Algebra 32 (1984), 129-142. (1984) Zbl0558.08004MR0741962DOI10.1016/0022-4049(84)90048-3
- Pálfy, P. P., 10.1007/BF01203365, Algebra Univers. 18 (1984), 262-273. (1984) Zbl0546.08005MR0745492DOI10.1007/BF01203365
- Quackenbush, R., Wolk, B., 10.1007/BF02944974, Algebra Univers. 1 (1971), 165-166. (1971) Zbl0231.06006MR0295980DOI10.1007/BF02944974
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.