Bicyclic commutator quotients with one non-elementary component
Mathematica Bohemica (2023)
- Volume: 148, Issue: 2, page 149-180
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topMayer, Daniel. "Bicyclic commutator quotients with one non-elementary component." Mathematica Bohemica 148.2 (2023): 149-180. <http://eudml.org/doc/299567>.
@article{Mayer2023,
abstract = {For any number field $K$ with non-elementary $3$-class group $\{\rm Cl\}_3(K)\simeq C_\{3^e\}\times C_3$, $e\ge 2$, the punctured capitulation type $\varkappa (K)$ of $K$ in its unramified cyclic cubic extensions $L_i$, $1\le i\le 4$, is an orbit under the action of $S_3\times S_3$. By means of Artin’s reciprocity law, the arithmetical invariant $\varkappa (K)$ is translated to the punctured transfer kernel type $\varkappa (G_2)$ of the automorphism group $G_2=\{\rm Gal\}(\{\rm F\}_3^2(K)/K)$ of the second Hilbert $3$-class field of $K$. A classification of finite $3$-groups $G$ with low order and bicyclic commutator quotient $G/G^\prime \simeq C_\{3^e\}\times C_3$, $2\le e\le 6$, according to the algebraic invariant $\varkappa (G)$, admits conclusions concerning the length of the Hilbert $3$-class field tower $\{\rm F\}_3^\infty (K)$ of imaginary quadratic number fields $K$.},
author = {Mayer, Daniel},
journal = {Mathematica Bohemica},
keywords = {Hilbert $3$-class field tower; maximal unramified pro-$3$ extension; unramified cyclic cubic extensions; Galois action; imaginary quadratic fields; bicyclic $3$-class group; punctured capitulation types; statistics; pro-$3$ groups; finite $3$-groups; generator rank; relation rank; Schur $\sigma $-groups; low index normal subgroups; kernels of Artin transfers; abelian quotient invariants; $p$-group generation algorithm; descendant trees; antitony principle},
language = {eng},
number = {2},
pages = {149-180},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Bicyclic commutator quotients with one non-elementary component},
url = {http://eudml.org/doc/299567},
volume = {148},
year = {2023},
}
TY - JOUR
AU - Mayer, Daniel
TI - Bicyclic commutator quotients with one non-elementary component
JO - Mathematica Bohemica
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 148
IS - 2
SP - 149
EP - 180
AB - For any number field $K$ with non-elementary $3$-class group ${\rm Cl}_3(K)\simeq C_{3^e}\times C_3$, $e\ge 2$, the punctured capitulation type $\varkappa (K)$ of $K$ in its unramified cyclic cubic extensions $L_i$, $1\le i\le 4$, is an orbit under the action of $S_3\times S_3$. By means of Artin’s reciprocity law, the arithmetical invariant $\varkappa (K)$ is translated to the punctured transfer kernel type $\varkappa (G_2)$ of the automorphism group $G_2={\rm Gal}({\rm F}_3^2(K)/K)$ of the second Hilbert $3$-class field of $K$. A classification of finite $3$-groups $G$ with low order and bicyclic commutator quotient $G/G^\prime \simeq C_{3^e}\times C_3$, $2\le e\le 6$, according to the algebraic invariant $\varkappa (G)$, admits conclusions concerning the length of the Hilbert $3$-class field tower ${\rm F}_3^\infty (K)$ of imaginary quadratic number fields $K$.
LA - eng
KW - Hilbert $3$-class field tower; maximal unramified pro-$3$ extension; unramified cyclic cubic extensions; Galois action; imaginary quadratic fields; bicyclic $3$-class group; punctured capitulation types; statistics; pro-$3$ groups; finite $3$-groups; generator rank; relation rank; Schur $\sigma $-groups; low index normal subgroups; kernels of Artin transfers; abelian quotient invariants; $p$-group generation algorithm; descendant trees; antitony principle
UR - http://eudml.org/doc/299567
ER -
References
top- Arrigoni, M., 10.1002/mana.19981920105, Math. Nachr. 192 (1998), 71-89. (1998) Zbl0908.20028MR1626391DOI10.1002/mana.19981920105
- Artin, E., 10.1007/BF02952531, Abh. Math. Semin. Univ. Hamb. 5 (1927), 353-363 German 9999JFM99999 53.0144.04. (1927) MR3069486DOI10.1007/BF02952531
- Artin, E., 10.1007/BF02941159, Abh. Math. Semin. Univ. Hamb. 7 (1929), 46-51 German 9999JFM99999 55.0699.01. (1929) MR3069515DOI10.1007/BF02941159
- Ascione, J. A., Havas, G., Leedham-Green, C. R., 10.1017/S0004972700010467, Bull. Aust. Math. Soc. 17 (1977), 257-274. (1977) Zbl0359.20018MR0470038DOI10.1017/S0004972700010467
- Bembom, T., The Capitulation Problem in Class Field Theory: Dissertation, University of Göttingen, Göttingen (2012). (2012) Zbl1298.11104
- Besche, H. U., Eick, B., O'Brien, E. A., The SmallGroups Library, Available at https://www.gap-system.org/Packages/smallgrp.html.
- Bosma, W., Cannon, J., Playoust, C., 10.1006/jsco.1996.0125, J. Symb. Comput. 24 (1997), 235-265. (1997) Zbl0898.68039MR1484478DOI10.1006/jsco.1996.0125
- Bosma, W., Steel, A., Matthews, G., Fisher, D., Cannon, J., Contini, S., (eds.), B. Smith, Handbook of Magma Functions, Available at http://magma.maths.usyd.edu.au/magma/handbook/.
- Boston, N., Bush, M. R., Hajir, F., 10.1007/s00208-016-1449-3, Math. Ann. 368 (2017), 633-669. (2017) Zbl1420.11137MR3651585DOI10.1007/s00208-016-1449-3
- Bush, M. R., Mayer, D. C., 10.1016/j.jnt.2014.08.010, J. Number Theory 147 (2015), 766-777. (2015) Zbl1395.11125MR3276352DOI10.1016/j.jnt.2014.08.010
- Eick, B., Leedham-Green, C. R., Newman, M. F., O'Brien, E. A., 10.1142/S0218196713500252, Int. J. Algebra Comput. 23 (2013), 1243-1288. (2013) Zbl1298.20020MR3096320DOI10.1142/S0218196713500252
- Fieker, C., 10.1090/S0025-5718-00-01255-2, Math. Comput. 70 (2001), 1293-1303. (2001) Zbl0982.11074MR1826583DOI10.1090/S0025-5718-00-01255-2
- Gamble, G., Nickel, W., O'Brien, E. A., Newman, M. F., ANU -Quotient: -Quotient and -Group Generation Algorithms, Available at https://www.gap-system.org/Packages/anupq.html.
- Heider, F.-P., Schmithals, B., 10.1515/crll.1982.336.1, J. Reine Angew. Math. 336 (1982), 1-25 German. (1982) Zbl0505.12016MR0671319DOI10.1515/crll.1982.336.1
- Holt, D. F., Eick, B., O'Brien, E. A., 10.1201/9781420035216, Discrete Mathematics and Its Applications. Chapman and Hall/CRC Press, Boca Raton (2005). (2005) Zbl1091.20001MR2129747DOI10.1201/9781420035216
- Koch, H., Venkov, B. B., Über den -Klassenkörperturm eines imaginär-quadratischen Zahlkörpers, Astérisque 24-25 (1975), 57-67 German. (1975) Zbl0335.12021MR0392928
- Group, MAGMA Developer, MAGMA: Computational Algebra System, Version 2.26-10, Available at http://magma.maths.usyd.edu.au/magma/ (2021). (2021)
- Mayer, D. C., Principalization in complex -fields, Numerical Mathematics and Computing Congressus Numerantium 80. Utilitas Mathematica Publishing, Winnipeg (1991), 73-87. (1991) Zbl0733.11037MR1124863
- Mayer, D. C., 10.1007/s00605-010-0277-x, Monatsh. Math. 166 (2012), 467-495. (2012) Zbl1261.11071MR2925150DOI10.1007/s00605-010-0277-x
- Mayer, D. C., 10.1515/tmmp-2015-0040, Tatra Mt. Math. Publ. 64 (2015), 21-57. (2015) Zbl1392.11086MR3458782DOI10.1515/tmmp-2015-0040
- Mayer, D. C., 10.4236/apm.2015.54020, Adv. Pure Math. 5 (2015), 162-195. (2015) DOI10.4236/apm.2015.54020
- Mayer, D. C., 10.4236/apm.2016.62008, Adv. Pure Math. 6 (2016), 66-104. (2016) DOI10.4236/apm.2016.62008
- Mayer, D. C., 10.4236/jamp.2016.47135, J. Appl. Math. Phys. 4 (2016), 1280-1293. (2016) DOI10.4236/jamp.2016.47135
- Mayer, D. C., 10.56947/gjom.v4i4.267, Gulf J. Math. 4 (2016), 74-102. (2016) Zbl1401.11147MR3596388DOI10.56947/gjom.v4i4.267
- Mayer, D. C., 10.5772/intechopen.68703, Graph Theory: Advanced Algorithms and Applications InTechOpen, London (2018), 85-113. (2018) DOI10.5772/intechopen.68703
- Mayer, D. C., Pattern recognition via Artin transfers: Applied to -class field towers, 3rd International Conference on Mathematics and its Applications (ICMA) 2020 Université Hassan II, Casablanca (2020), Available at http://www.algebra.at/DCM@ICMA2020Casablanca.pdf. (2020)
- Mayer, D. C., BCF-groups with elevated rank distribution, Available at https://arxiv.org/abs/2110.03558 (2021), 22 pages. (2021)
- Mayer, D. C., First excited state with moderate rank distribution, Available at https://arxiv.org/abs/2110.06511 (2021), 7 pages. (2021)
- Mayer, D. C., New perspectives of the power-commutator-structure: Coclass trees of CF-groups and related BCF-groups, Available at https://arxiv.org/abs/2112.15215 (2021), 25 pages. (2021)
- Mayer, D. C., Periodic Schur -groups of non-elementary bicyclic type, Available at https://arxiv.org/abs/2110.13886 (2021), 18 pages. (2021)
- Nebelung, B., Klassifikation metabelscher 3-Gruppen mit Faktorkommutatorgruppe vom Typ (3,3) und Anwendung auf das Kapitulationsproblem: Inauguraldissertation, Universität zu Köln, Köln (1989), German. (1989)
- Newman, M. F., 10.1007/BFb0087814, Group Theory, Canberra, 1975 Lecture Notes in Mathematics 573. Springer, Berlin (1977), 73-84. (1977) Zbl0519.20018MR0453862DOI10.1007/BFb0087814
- O'Brien, E. A., 10.1016/S0747-7171(08)80082-X, J. Symb. Comput. 9 (1990), 677-698. (1990) Zbl0736.20001MR1075431DOI10.1016/S0747-7171(08)80082-X
- Scholz, A., Taussky, O., 10.1515/crll.1934.171.19, J. Reine Angew. Math. 171 (1934), 19-41 German 9999JFM99999 60.0126.02. (1934) MR1581417DOI10.1515/crll.1934.171.19
- Shafarevich, I. R., 10.1090/trans2/059, Am. Math. Soc., Transl., II. Ser. 59 (1966), 128-149 translation from Publ. Math., Inst. Hautes Étud. Sci. 18 1963 71-95. (1966) Zbl0199.09707MR0176979DOI10.1090/trans2/059
- Taussky, O., 10.1515/crll.1969.239-240.435, J. Reine Angew. Math. 239-240 (1969), 435-438. (1969) Zbl0186.09002MR0279070DOI10.1515/crll.1969.239-240.435
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.