Bicyclic commutator quotients with one non-elementary component

Daniel Mayer

Mathematica Bohemica (2023)

  • Volume: 148, Issue: 2, page 149-180
  • ISSN: 0862-7959

Abstract

top
For any number field K with non-elementary 3 -class group Cl 3 ( K ) C 3 e × C 3 , e 2 , the punctured capitulation type ϰ ( K ) of K in its unramified cyclic cubic extensions L i , 1 i 4 , is an orbit under the action of S 3 × S 3 . By means of Artin’s reciprocity law, the arithmetical invariant ϰ ( K ) is translated to the punctured transfer kernel type ϰ ( G 2 ) of the automorphism group G 2 = Gal ( F 3 2 ( K ) / K ) of the second Hilbert 3 -class field of K . A classification of finite 3 -groups G with low order and bicyclic commutator quotient G / G ' C 3 e × C 3 , 2 e 6 , according to the algebraic invariant ϰ ( G ) , admits conclusions concerning the length of the Hilbert 3 -class field tower F 3 ( K ) of imaginary quadratic number fields K .

How to cite

top

Mayer, Daniel. "Bicyclic commutator quotients with one non-elementary component." Mathematica Bohemica 148.2 (2023): 149-180. <http://eudml.org/doc/299567>.

@article{Mayer2023,
abstract = {For any number field $K$ with non-elementary $3$-class group $\{\rm Cl\}_3(K)\simeq C_\{3^e\}\times C_3$, $e\ge 2$, the punctured capitulation type $\varkappa (K)$ of $K$ in its unramified cyclic cubic extensions $L_i$, $1\le i\le 4$, is an orbit under the action of $S_3\times S_3$. By means of Artin’s reciprocity law, the arithmetical invariant $\varkappa (K)$ is translated to the punctured transfer kernel type $\varkappa (G_2)$ of the automorphism group $G_2=\{\rm Gal\}(\{\rm F\}_3^2(K)/K)$ of the second Hilbert $3$-class field of $K$. A classification of finite $3$-groups $G$ with low order and bicyclic commutator quotient $G/G^\prime \simeq C_\{3^e\}\times C_3$, $2\le e\le 6$, according to the algebraic invariant $\varkappa (G)$, admits conclusions concerning the length of the Hilbert $3$-class field tower $\{\rm F\}_3^\infty (K)$ of imaginary quadratic number fields $K$.},
author = {Mayer, Daniel},
journal = {Mathematica Bohemica},
keywords = {Hilbert $3$-class field tower; maximal unramified pro-$3$ extension; unramified cyclic cubic extensions; Galois action; imaginary quadratic fields; bicyclic $3$-class group; punctured capitulation types; statistics; pro-$3$ groups; finite $3$-groups; generator rank; relation rank; Schur $\sigma $-groups; low index normal subgroups; kernels of Artin transfers; abelian quotient invariants; $p$-group generation algorithm; descendant trees; antitony principle},
language = {eng},
number = {2},
pages = {149-180},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Bicyclic commutator quotients with one non-elementary component},
url = {http://eudml.org/doc/299567},
volume = {148},
year = {2023},
}

TY - JOUR
AU - Mayer, Daniel
TI - Bicyclic commutator quotients with one non-elementary component
JO - Mathematica Bohemica
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 148
IS - 2
SP - 149
EP - 180
AB - For any number field $K$ with non-elementary $3$-class group ${\rm Cl}_3(K)\simeq C_{3^e}\times C_3$, $e\ge 2$, the punctured capitulation type $\varkappa (K)$ of $K$ in its unramified cyclic cubic extensions $L_i$, $1\le i\le 4$, is an orbit under the action of $S_3\times S_3$. By means of Artin’s reciprocity law, the arithmetical invariant $\varkappa (K)$ is translated to the punctured transfer kernel type $\varkappa (G_2)$ of the automorphism group $G_2={\rm Gal}({\rm F}_3^2(K)/K)$ of the second Hilbert $3$-class field of $K$. A classification of finite $3$-groups $G$ with low order and bicyclic commutator quotient $G/G^\prime \simeq C_{3^e}\times C_3$, $2\le e\le 6$, according to the algebraic invariant $\varkappa (G)$, admits conclusions concerning the length of the Hilbert $3$-class field tower ${\rm F}_3^\infty (K)$ of imaginary quadratic number fields $K$.
LA - eng
KW - Hilbert $3$-class field tower; maximal unramified pro-$3$ extension; unramified cyclic cubic extensions; Galois action; imaginary quadratic fields; bicyclic $3$-class group; punctured capitulation types; statistics; pro-$3$ groups; finite $3$-groups; generator rank; relation rank; Schur $\sigma $-groups; low index normal subgroups; kernels of Artin transfers; abelian quotient invariants; $p$-group generation algorithm; descendant trees; antitony principle
UR - http://eudml.org/doc/299567
ER -

References

top
  1. Arrigoni, M., 10.1002/mana.19981920105, Math. Nachr. 192 (1998), 71-89. (1998) Zbl0908.20028MR1626391DOI10.1002/mana.19981920105
  2. Artin, E., 10.1007/BF02952531, Abh. Math. Semin. Univ. Hamb. 5 (1927), 353-363 German 9999JFM99999 53.0144.04. (1927) MR3069486DOI10.1007/BF02952531
  3. Artin, E., 10.1007/BF02941159, Abh. Math. Semin. Univ. Hamb. 7 (1929), 46-51 German 9999JFM99999 55.0699.01. (1929) MR3069515DOI10.1007/BF02941159
  4. Ascione, J. A., Havas, G., Leedham-Green, C. R., 10.1017/S0004972700010467, Bull. Aust. Math. Soc. 17 (1977), 257-274. (1977) Zbl0359.20018MR0470038DOI10.1017/S0004972700010467
  5. Bembom, T., The Capitulation Problem in Class Field Theory: Dissertation, University of Göttingen, Göttingen (2012). (2012) Zbl1298.11104
  6. Besche, H. U., Eick, B., O'Brien, E. A., The SmallGroups Library, Available at https://www.gap-system.org/Packages/smallgrp.html. 
  7. Bosma, W., Cannon, J., Playoust, C., 10.1006/jsco.1996.0125, J. Symb. Comput. 24 (1997), 235-265. (1997) Zbl0898.68039MR1484478DOI10.1006/jsco.1996.0125
  8. Bosma, W., Steel, A., Matthews, G., Fisher, D., Cannon, J., Contini, S., (eds.), B. Smith, Handbook of Magma Functions, Available at http://magma.maths.usyd.edu.au/magma/handbook/. 
  9. Boston, N., Bush, M. R., Hajir, F., 10.1007/s00208-016-1449-3, Math. Ann. 368 (2017), 633-669. (2017) Zbl1420.11137MR3651585DOI10.1007/s00208-016-1449-3
  10. Bush, M. R., Mayer, D. C., 10.1016/j.jnt.2014.08.010, J. Number Theory 147 (2015), 766-777. (2015) Zbl1395.11125MR3276352DOI10.1016/j.jnt.2014.08.010
  11. Eick, B., Leedham-Green, C. R., Newman, M. F., O'Brien, E. A., 10.1142/S0218196713500252, Int. J. Algebra Comput. 23 (2013), 1243-1288. (2013) Zbl1298.20020MR3096320DOI10.1142/S0218196713500252
  12. Fieker, C., 10.1090/S0025-5718-00-01255-2, Math. Comput. 70 (2001), 1293-1303. (2001) Zbl0982.11074MR1826583DOI10.1090/S0025-5718-00-01255-2
  13. Gamble, G., Nickel, W., O'Brien, E. A., Newman, M. F., ANU p -Quotient: p -Quotient and p -Group Generation Algorithms, Available at https://www.gap-system.org/Packages/anupq.html. 
  14. Heider, F.-P., Schmithals, B., 10.1515/crll.1982.336.1, J. Reine Angew. Math. 336 (1982), 1-25 German. (1982) Zbl0505.12016MR0671319DOI10.1515/crll.1982.336.1
  15. Holt, D. F., Eick, B., O'Brien, E. A., 10.1201/9781420035216, Discrete Mathematics and Its Applications. Chapman and Hall/CRC Press, Boca Raton (2005). (2005) Zbl1091.20001MR2129747DOI10.1201/9781420035216
  16. Koch, H., Venkov, B. B., Über den p -Klassenkörperturm eines imaginär-quadratischen Zahlkörpers, Astérisque 24-25 (1975), 57-67 German. (1975) Zbl0335.12021MR0392928
  17. Group, MAGMA Developer, MAGMA: Computational Algebra System, Version 2.26-10, Available at http://magma.maths.usyd.edu.au/magma/ (2021). (2021) 
  18. Mayer, D. C., Principalization in complex S 3 -fields, Numerical Mathematics and Computing Congressus Numerantium 80. Utilitas Mathematica Publishing, Winnipeg (1991), 73-87. (1991) Zbl0733.11037MR1124863
  19. Mayer, D. C., 10.1007/s00605-010-0277-x, Monatsh. Math. 166 (2012), 467-495. (2012) Zbl1261.11071MR2925150DOI10.1007/s00605-010-0277-x
  20. Mayer, D. C., 10.1515/tmmp-2015-0040, Tatra Mt. Math. Publ. 64 (2015), 21-57. (2015) Zbl1392.11086MR3458782DOI10.1515/tmmp-2015-0040
  21. Mayer, D. C., 10.4236/apm.2015.54020, Adv. Pure Math. 5 (2015), 162-195. (2015) DOI10.4236/apm.2015.54020
  22. Mayer, D. C., 10.4236/apm.2016.62008, Adv. Pure Math. 6 (2016), 66-104. (2016) DOI10.4236/apm.2016.62008
  23. Mayer, D. C., 10.4236/jamp.2016.47135, J. Appl. Math. Phys. 4 (2016), 1280-1293. (2016) DOI10.4236/jamp.2016.47135
  24. Mayer, D. C., 10.56947/gjom.v4i4.267, Gulf J. Math. 4 (2016), 74-102. (2016) Zbl1401.11147MR3596388DOI10.56947/gjom.v4i4.267
  25. Mayer, D. C., 10.5772/intechopen.68703, Graph Theory: Advanced Algorithms and Applications InTechOpen, London (2018), 85-113. (2018) DOI10.5772/intechopen.68703
  26. Mayer, D. C., Pattern recognition via Artin transfers: Applied to p -class field towers, 3rd International Conference on Mathematics and its Applications (ICMA) 2020 Université Hassan II, Casablanca (2020), Available at http://www.algebra.at/DCM@ICMA2020Casablanca.pdf. (2020) 
  27. Mayer, D. C., BCF-groups with elevated rank distribution, Available at https://arxiv.org/abs/2110.03558 (2021), 22 pages. (2021) 
  28. Mayer, D. C., First excited state with moderate rank distribution, Available at https://arxiv.org/abs/2110.06511 (2021), 7 pages. (2021) 
  29. Mayer, D. C., New perspectives of the power-commutator-structure: Coclass trees of CF-groups and related BCF-groups, Available at https://arxiv.org/abs/2112.15215 (2021), 25 pages. (2021) 
  30. Mayer, D. C., Periodic Schur σ -groups of non-elementary bicyclic type, Available at https://arxiv.org/abs/2110.13886 (2021), 18 pages. (2021) 
  31. Nebelung, B., Klassifikation metabelscher 3-Gruppen mit Faktorkommutatorgruppe vom Typ (3,3) und Anwendung auf das Kapitulationsproblem: Inauguraldissertation, Universität zu Köln, Köln (1989), German. (1989) 
  32. Newman, M. F., 10.1007/BFb0087814, Group Theory, Canberra, 1975 Lecture Notes in Mathematics 573. Springer, Berlin (1977), 73-84. (1977) Zbl0519.20018MR0453862DOI10.1007/BFb0087814
  33. O'Brien, E. A., 10.1016/S0747-7171(08)80082-X, J. Symb. Comput. 9 (1990), 677-698. (1990) Zbl0736.20001MR1075431DOI10.1016/S0747-7171(08)80082-X
  34. Scholz, A., Taussky, O., 10.1515/crll.1934.171.19, J. Reine Angew. Math. 171 (1934), 19-41 German 9999JFM99999 60.0126.02. (1934) MR1581417DOI10.1515/crll.1934.171.19
  35. Shafarevich, I. R., 10.1090/trans2/059, Am. Math. Soc., Transl., II. Ser. 59 (1966), 128-149 translation from Publ. Math., Inst. Hautes Étud. Sci. 18 1963 71-95. (1966) Zbl0199.09707MR0176979DOI10.1090/trans2/059
  36. Taussky, O., 10.1515/crll.1969.239-240.435, J. Reine Angew. Math. 239-240 (1969), 435-438. (1969) Zbl0186.09002MR0279070DOI10.1515/crll.1969.239-240.435

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.