Distributed optimization with inexact oracle
Kui Zhu; Yichen Zhang; Yutao Tang
Kybernetika (2022)
- Volume: 58, Issue: 4, page 578-592
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topZhu, Kui, Zhang, Yichen, and Tang, Yutao. "Distributed optimization with inexact oracle." Kybernetika 58.4 (2022): 578-592. <http://eudml.org/doc/299569>.
@article{Zhu2022,
abstract = {In this paper, we study the distributed optimization problem using approximate first-order information. We suppose the agent can repeatedly call an inexact first-order oracle of each individual objective function and exchange information with its time-varying neighbors. We revisit the distributed subgradient method in this circumstance and show its suboptimality under square summable but not summable step sizes. We also present several conditions on the inexactness of the local oracles to ensure an exact convergence of the iterative sequences towards the global optimal solution. A numerical example is given to verify the efficiency of our algorithm.},
author = {Zhu, Kui, Zhang, Yichen, Tang, Yutao},
journal = {Kybernetika},
keywords = {distributed optimization; inexact oracle; first-order method; multi-agent network; time-varying topology},
language = {eng},
number = {4},
pages = {578-592},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Distributed optimization with inexact oracle},
url = {http://eudml.org/doc/299569},
volume = {58},
year = {2022},
}
TY - JOUR
AU - Zhu, Kui
AU - Zhang, Yichen
AU - Tang, Yutao
TI - Distributed optimization with inexact oracle
JO - Kybernetika
PY - 2022
PB - Institute of Information Theory and Automation AS CR
VL - 58
IS - 4
SP - 578
EP - 592
AB - In this paper, we study the distributed optimization problem using approximate first-order information. We suppose the agent can repeatedly call an inexact first-order oracle of each individual objective function and exchange information with its time-varying neighbors. We revisit the distributed subgradient method in this circumstance and show its suboptimality under square summable but not summable step sizes. We also present several conditions on the inexactness of the local oracles to ensure an exact convergence of the iterative sequences towards the global optimal solution. A numerical example is given to verify the efficiency of our algorithm.
LA - eng
KW - distributed optimization; inexact oracle; first-order method; multi-agent network; time-varying topology
UR - http://eudml.org/doc/299569
ER -
References
top- Alber, Y. I., Iusem, A. N., Solodov, M. V., , Math. Program. 81 (1998), 23-35. MR1617701DOI
- Auslender, A., Teboulle, M., , Math. Oper. Res. 29 (2004), 1-26. MR2065711DOI
- Bastianello, N., Dall'Anese, E., , In: Proc. European Control Conf. 2021, pp. 2432-2437. DOI
- Bertsekas, D. P., Convex optimization algorithms., Athena Scientific, Belmont 2015. MR3558548
- Cheng, S., Liang, S., , Kybernetika 56 (2020), 559-577. MR4131743DOI
- Correa, R., Lemaréchal, C., , Math. Program. 62 (1993), 261-275. MR1247617DOI
- Devolder, O., Glineur, F., Nesterov, Y., , Math. Program. 146 (2014), 37-75. MR3232608DOI
- Duchi, J. C., Agarwal, A., Wainwright, M. J., , IEEE Trans. Autom. Control 57 (2011), 592-606. MR2932818DOI
- Jakovetić, D., Xavier, J., Moura, J. M., , IEEE Trans. Automat. Control 59 (2014), 1131-1146. MR3214204DOI
- Kiwiel, K. C., , SIAM J. Optim. 14 (2004), 807-840. MR2085944DOI
- Li, P., Hu, J., , Control Theory Technol. 19 (2021), 499-506. MR4356235DOI
- Li, P., Hu, J., Qiu, L., Zhao, Y., Ghosh, B. K., , IEEE Trans. Control Netw. Syst. 9 (2022), 356-366. MR4450544DOI
- Li, P., Zhao, Y., Hu, J., Zhang, Y., Ghosh, B. K., , Neurocomputing 407 (2020), 155-162. DOI
- Liu, S., Qiu, Z., Xie, L., , Automatica 83 (2017), 162-169. MR3680426DOI
- Lou, Y., Shi, G., Johansson, K., Hong, Y., , IEEE Trans. Automat. Control 59 (2014), 1722-1736. MR3232068DOI
- Nedić, A., Bertsekas, D. P., , Math. Program. 125 (2010), 75-99. MR2718695DOI
- Nedić, A., Liu, J., , Ann. Rev. Control Robot. Auton. Syst. 1 (2018), 77-103. DOI
- Nedić, A., Olshevsky, A., Shi, W., , SIAM J. Optim. 27 (2017), 2597-2633. MR3738851DOI
- Nedic, A., Ozdaglar, A., , IEEE Trans. Automat. Control 54 (2009), 48-61. MR2478070DOI
- Nedić, A., Ozdaglar, A., Parrilo, P. A., , IEEE Trans. Automat. Control 55 (2010), 922-938. MR2654432DOI
- Polyak, B., Introduction to optimization., Optimization Software Inc., New York 1987. MR1099605
- Qu, G., Li, N., , IEEE Trans. Control Netw. Syst. 5 (2018), 1245-1260. MR3861009DOI
- Rasch, J., Antonin, C., , Comput. Optim. Appl. 76 (2020), 381-430. MR4098836DOI
- Rockafellar, R. T., , SIAM J. Control Optim. 14 (1976), 877-898. Zbl0358.90053MR0410483DOI
- Shi, G., Johansson, K. H., Hong, Y., , IEEE Trans. Automat. Control 58 (2013), 610-622. MR3029459DOI
- Shi, W., Ling, Q., Wu, G., Yin, W., , SIAM J. Optim. 25 (2015), 944-966. MR3343366DOI
- Tang, Y., Deng, Z., Hong, Y., , IEEE Trans. Cybernet. 49 (2019), 1768-1779. DOI
- Tang, Y., Wang, X., , IEEE Trans. Automat. Control 66 (2021), 1733-1740. MR4240200DOI
- Tang, Y., Zhu, K., , Int. J. Robust Nonlinear Control 32 (2022), 2084-2099. MR4384879DOI
- Xi, C., Khan, U. A., , IEEE Trans. Automat. Control 62 (2017), 3986-3992. MR3684332DOI
- Yang, T., Yi, X., Wu, J., Yuan, Y., Wu, D., Meng, Z., Hong, Y., Wang, H., Lin, Z., Johansson, K. H., , Ann. Rev. Control 47 (2019), 278-305. MR3973217DOI
- Yi, P., Hong, Y., Liu, F., , Syst. Control Lett. 83 (2015), 45-52. Zbl1327.93033MR3373270DOI
- Zeng, X., Yi, P., Hong, Y., , IEEE Trans. Automat. Control 62 (2017), 5227-5233. MR3708893DOI
- Zhang, Y., Deng, Z., Hong, Y., , Automatica 79 (2017), 207-213. MR3627983DOI
- Zhu, K., Tang, Y., Primal-dual -subgradient method for distributed optimization., J. Syst. Sci. Complex. (2022), accepted.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.