Congruence preserving operations on the ring p 3

Cyril Gavala; Miroslav Ploščica; Ivana Varga

Mathematica Bohemica (2023)

  • Volume: 148, Issue: 4, page 519-535
  • ISSN: 0862-7959

Abstract

top
We investigate the interval I ( p 3 ) in the lattice of clones on the ring p 3 between the clone of polynomial operations and the clone of congruence preserving operations. All clones in this interval are known and described by means of generators. In this paper, we characterize each of these clones by the property of preserving a small set of relations. These relations turn out to be in a close connection to commutators.

How to cite

top

Gavala, Cyril, Ploščica, Miroslav, and Varga, Ivana. "Congruence preserving operations on the ring $\mathbb {Z}_{p^3}$." Mathematica Bohemica 148.4 (2023): 519-535. <http://eudml.org/doc/299579>.

@article{Gavala2023,
abstract = {We investigate the interval $I(p^3)$ in the lattice of clones on the ring $\mathbb \{Z\}_\{p^3\}$ between the clone of polynomial operations and the clone of congruence preserving operations. All clones in this interval are known and described by means of generators. In this paper, we characterize each of these clones by the property of preserving a small set of relations. These relations turn out to be in a close connection to commutators.},
author = {Gavala, Cyril, Ploščica, Miroslav, Varga, Ivana},
journal = {Mathematica Bohemica},
keywords = {congruence; clone; polynomial},
language = {eng},
number = {4},
pages = {519-535},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Congruence preserving operations on the ring $\mathbb \{Z\}_\{p^3\}$},
url = {http://eudml.org/doc/299579},
volume = {148},
year = {2023},
}

TY - JOUR
AU - Gavala, Cyril
AU - Ploščica, Miroslav
AU - Varga, Ivana
TI - Congruence preserving operations on the ring $\mathbb {Z}_{p^3}$
JO - Mathematica Bohemica
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 148
IS - 4
SP - 519
EP - 535
AB - We investigate the interval $I(p^3)$ in the lattice of clones on the ring $\mathbb {Z}_{p^3}$ between the clone of polynomial operations and the clone of congruence preserving operations. All clones in this interval are known and described by means of generators. In this paper, we characterize each of these clones by the property of preserving a small set of relations. These relations turn out to be in a close connection to commutators.
LA - eng
KW - congruence; clone; polynomial
UR - http://eudml.org/doc/299579
ER -

References

top
  1. Aichinger, E., Mayr, P., 10.1007/s10474-006-0530-x, Acta Math. Hung. 114 (2007), 267-285. (2007) Zbl1121.08004MR2296547DOI10.1007/s10474-006-0530-x
  2. Aichinger, E., Mudrinski, N., 10.1007/s00012-010-0084-1, Algebra Univers. 63 (2010), 367-403. (2010) Zbl1206.08003MR2734303DOI10.1007/s00012-010-0084-1
  3. Bulatov, A. A., Polynomial reducts of modules I. Rough classification, Mult.-Valued Log. 3 (1998), 135-154. (1998) Zbl0909.08003MR1447082
  4. Bulatov, A. A., Polynomial reducts of modules II. Algebras of primitive and nilpotent functions, Mult.-Valued Log. 3 (1998), 173-193. (1998) Zbl0923.08002MR1447082
  5. Bulatov, A. A., On the number of finite Mal'tsev algebras, Contributions to General Algebra 13 Johannes Heyn, Klagenfurt (2001), 41-54. (2001) Zbl0986.08003MR1854568
  6. Bulatov, A. A., 10.1080/10236620215291, Mult.-Valued Log. 8 (2002), 193-221. (2002) Zbl1022.08001MR1957653DOI10.1080/10236620215291
  7. Freese, R., McKenzie, R., Commutator Theory for Congruence Modular Varieties, London Mathematical Society Lecture Note Series 125. Cambridge University Press, Cambridge (1987). (1987) Zbl0636.08001MR0909290
  8. Gavala, C., Compatible Operations on Rings of Integers Modulo n : Master Thesis, Šafárik University Košice, Košice (2016), Slovak. (2016) 
  9. Gavrilov, G. P., 10.1515/dma.1996.6.4.405, Discrete Math. Appl. 6 (1996), 405-412 translation from Diskretn. Mat. 8 1996 90-97. (1996) Zbl0863.03010MR1422350DOI10.1515/dma.1996.6.4.405
  10. Gavrilov, G. P., 10.1515/dma.1997.7.3.231, Discrete Math. Appl. 7 (1997), 231-242 translation from Diskretn. Mat. 9 1997 12-23. (1997) Zbl0965.03029MR1468067DOI10.1515/dma.1997.7.3.231
  11. Idziak, P. M., 10.1142/S021819679900014X, Int. J. Algebra Comput. 9 (1999), 213-226. (1999) Zbl1023.08003MR1703074DOI10.1142/S021819679900014X
  12. Mayr, P., 10.1142/S0218196708004597, Int. J. Algebra Comput. 18 (2008), 759-777. (2008) Zbl1147.08003MR2428154DOI10.1142/S0218196708004597
  13. Meshchaninov, D. G., 10.1007/BF01158427, Math. Notes 44 (1988), 850-854 translation from Mat. Zametki 44 1988 673-681. (1988) Zbl0669.03012MR0980588DOI10.1007/BF01158427
  14. Opršal, J., 10.1007/s00012-016-0391-2, Algebra Univers. 76 (2016), 367-383. (2016) Zbl1357.08002MR3556818DOI10.1007/s00012-016-0391-2
  15. Ploščica, M., Varga, I., Clones of compatible operations on rings p k , J. Mult.-Val. Log. Soft Comput. 36 (2021), 391-404. (2021) Zbl07536110MR4578809
  16. Remizov, A. B., 10.1515/dma.1991.1.1.9, Discrete Math. Appl. 1 (1991), 9-22 translation from Diskretn. Mat. 1 1989 3-15. (1991) Zbl0726.03014MR1072635DOI10.1515/dma.1991.1.1.9
  17. Salomaa, A., On infinitely generated sets of operations in finite algebras, Ann. Univ. Turku., Ser. A I 74 (1964), 13 pages. (1964) Zbl0123.00503MR0169781
  18. Shaw, J., 10.1007/s00012-014-0287-y, Algebra Univers. 72 (2014), 29-52. (2014) Zbl1309.08003MR3229950DOI10.1007/s00012-014-0287-y
  19. Szendrei, Á., Idempotent reducts of abelian groups, Acta Sci. Math. 38 (1976), 171-182. (1976) Zbl0307.20032MR0422118
  20. Szendrei, Á., Clones of linear operations on finite sets, Finite Algebra and Multiple-Valued Logic Colloquia Mathematica Societatis János Bolyai 28. North-Holland, Amsterdam (1981), 693-738. (1981) Zbl0487.08002MR0648640

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.