A diophantine equation involving special prime numbers

Stoyan Dimitrov

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 1, page 151-176
  • ISSN: 0011-4642

Abstract

top
Let [ · ] be the floor function. In this paper, we prove by asymptotic formula that when 1 < c < 3441 2539 , then every sufficiently large positive integer N can be represented in the form N = [ p 1 c ] + [ p 2 c ] + [ p 3 c ] + [ p 4 c ] + [ p 5 c ] , where p 1 , p 2 , p 3 , p 4 , p 5 are primes such that p 1 = x 2 + y 2 + 1 .

How to cite

top

Dimitrov, Stoyan. "A diophantine equation involving special prime numbers." Czechoslovak Mathematical Journal 73.1 (2023): 151-176. <http://eudml.org/doc/299581>.

@article{Dimitrov2023,
abstract = {Let $[\{\cdot \}]$ be the floor function. In this paper, we prove by asymptotic formula that when $1<c<\frac\{3441\}\{2539\}$, then every sufficiently large positive integer $N$ can be represented in the form \[ N=[p^c\_1]+[p^c\_2]+[p^c\_3]+[p^c\_4]+[p^c\_5], \] where $p_1$, $p_2$, $p_3$, $p_4$, $p_5$ are primes such that $p_1=x^2 + y^2 +1$.},
author = {Dimitrov, Stoyan},
journal = {Czechoslovak Mathematical Journal},
keywords = {Diophantine equation; prime; exponential sum; asymptotic formula},
language = {eng},
number = {1},
pages = {151-176},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A diophantine equation involving special prime numbers},
url = {http://eudml.org/doc/299581},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Dimitrov, Stoyan
TI - A diophantine equation involving special prime numbers
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 1
SP - 151
EP - 176
AB - Let $[{\cdot }]$ be the floor function. In this paper, we prove by asymptotic formula that when $1<c<\frac{3441}{2539}$, then every sufficiently large positive integer $N$ can be represented in the form \[ N=[p^c_1]+[p^c_2]+[p^c_3]+[p^c_4]+[p^c_5], \] where $p_1$, $p_2$, $p_3$, $p_4$, $p_5$ are primes such that $p_1=x^2 + y^2 +1$.
LA - eng
KW - Diophantine equation; prime; exponential sum; asymptotic formula
UR - http://eudml.org/doc/299581
ER -

References

top
  1. Arkhipov, G. I., Zhitkov, A. N., On Waring's problem with non-integral exponent, Izv. Akad. Nauk SSSR, Ser. Mat. 48 (1984), 1138-1150 Russian. (1984) Zbl0568.10027MR772109
  2. Baker, R., 10.7169/facm/1912, Funct. Approximatio, Comment. Math. 64 (2021), 203-250. (2021) Zbl1484.11195MR4278752DOI10.7169/facm/1912
  3. Buriev, K., Additive Problems with Prime Numbers: Thesis, Moscow State University, Moscow (1989), Russian. (1989) MR0946769
  4. Deshouillers, J.-M., 10.24033/bsmf.1762, Bull. Soc. Math. Fr. 101 (1973), 285-295 French. (1973) Zbl0292.10038MR342477DOI10.24033/bsmf.1762
  5. Deshouillers, J.-M., 10.4064/aa-25-4-393-403, Acta Arith. 25 (1974), 393-403 French. (1974) Zbl0278.10020MR340204DOI10.4064/aa-25-4-393-403
  6. Dimitrov, S. I., 10.17654/NT039030335, JP J. Algebra Number Theory Appl. 39 (2017), 335-368. (2017) Zbl1373.11032MR3846403DOI10.17654/NT039030335
  7. Dimitrov, S. I., 10.1007/s10986-021-09538-5, Lith. Math. J. 61 (2021), 445-459. (2021) Zbl07441577MR4344100DOI10.1007/s10986-021-09538-5
  8. Dimitrov, S. I., 10.1007/s11139-021-00545-1, Ramanujan J. 59 (2022), 571-607. (2022) Zbl7589232MR4480301DOI10.1007/s11139-021-00545-1
  9. Dimitrov, S. I., A quinary Diophantine inequality by primes with one of the form p = x 2 + y 2 + 1 , Available at https://arxiv.org/abs/2107.04028v2 (2021), 27 pages. (2021) MR4480301
  10. Graham, S. W., Kolesnik, G., 10.1017/CBO9780511661976, London Mathematical Society Lecture Note Series 126. Cambridge University Press, New York (1991). (1991) Zbl0713.11001MR1145488DOI10.1017/CBO9780511661976
  11. Gritsenko, S. A., 10.1070/IM1993v041n03ABEH002271, Russ. Acad. Sci., Izv., Math. 41 (1993), 447-464. (1993) Zbl0810.11057MR1208161DOI10.1070/IM1993v041n03ABEH002271
  12. Heath-Brown, D. R., 10.1016/0022-314X(83)90044-6, J. Number Theory 16 (1983), 242-266. (1983) Zbl0513.10042MR698168DOI10.1016/0022-314X(83)90044-6
  13. Hilbert, D., 10.1007/BF01450405, Math. Ann. 67 (1909), 281-300 German 9999JFM99999 40.0236.03. (1909) MR1511530DOI10.1007/BF01450405
  14. Hooley, C., Applications of Sieve Methods to the Theory of Numbers, Cambridge Tracts in Mathematics 70. Cambridge University Press, Cambridge (1976). (1976) Zbl0327.10044MR0404173
  15. Hua, L.-K., 10.1093/qmath/os-9.1.68, Q. J. Math., Oxf. Ser. 9 (1938), 68-80. (1938) Zbl0018.29404MR3363459DOI10.1093/qmath/os-9.1.68
  16. Huxley, M. N., 10.1112/plms/s3-66.1.1, Proc. Lond. Math. Soc., III. Ser. 90 (2005), 1-41. (2005) Zbl1083.11052MR1189090DOI10.1112/plms/s3-66.1.1
  17. Iwaniec, H., Kowalski, E., 10.1090/coll/053, Colloquium Publications. American Mathematical Society 53. AMS, Providence (2004). (2004) Zbl1059.11001MR2061214DOI10.1090/coll/053
  18. Konyagin, S. V., 10.1023/A:1023279809491, Math. Notes 73 (2003), 594-597. (2003) Zbl1093.11006MR1991912DOI10.1023/A:1023279809491
  19. Li, S., 10.1142/S1793042119300011, Int. J. Number Theory 15 (2019), 1601-1616. (2019) Zbl1462.11084MR3994149DOI10.1142/S1793042119300011
  20. Linnik, Y. V., An asymptotic formula in an additive problem of Hardy and Littlewood, Izv. Akad. Nauk SSSR, Ser. Mat. 24 (1960), 629-706 Russian. (1960) Zbl0099.03501MR122796
  21. Sargos, P., Wu, J., 10.1023/A:1006777803163, Acta Math. Hung. 87 (2000), 333-354. (2000) Zbl0963.11045MR1771211DOI10.1023/A:1006777803163
  22. Segal, B. I., On a theorem analogous to Waring's theorem, Dokl. Akad. Nauk. SSSR 1933 (1933), 47-49 Russian. (1933) Zbl0008.24303
  23. Segal, B. I., Waring's theorem for powers with fractional and irrational exponents, Trudy Mat. Inst. Steklov. 5 (1934), 73-86 Russian. (1934) Zbl0009.29905
  24. Tolev, D. I., 10.4064/aa-61-3-289-306, Acta Arith. 61 (1992), 289-306. (1992) Zbl0762.11033MR1161480DOI10.4064/aa-61-3-289-306
  25. Zhang, M., Li, J., On a Diophantine equation with five prime variables, Available at https://arxiv.org/abs/1809.04591v2 (2019), 17 pages. (2019) 
  26. Zhang, M., Li, J., On a Diophantine equation with three prime variables, Integers 19 (2019), Article ID A39, 13 pages. (2019) Zbl1461.11133MR3997444

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.