A diophantine equation involving special prime numbers
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 1, page 151-176
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDimitrov, Stoyan. "A diophantine equation involving special prime numbers." Czechoslovak Mathematical Journal 73.1 (2023): 151-176. <http://eudml.org/doc/299581>.
@article{Dimitrov2023,
abstract = {Let $[\{\cdot \}]$ be the floor function. In this paper, we prove by asymptotic formula that when $1<c<\frac\{3441\}\{2539\}$, then every sufficiently large positive integer $N$ can be represented in the form \[ N=[p^c\_1]+[p^c\_2]+[p^c\_3]+[p^c\_4]+[p^c\_5], \]
where $p_1$, $p_2$, $p_3$, $p_4$, $p_5$ are primes such that $p_1=x^2 + y^2 +1$.},
author = {Dimitrov, Stoyan},
journal = {Czechoslovak Mathematical Journal},
keywords = {Diophantine equation; prime; exponential sum; asymptotic formula},
language = {eng},
number = {1},
pages = {151-176},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A diophantine equation involving special prime numbers},
url = {http://eudml.org/doc/299581},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Dimitrov, Stoyan
TI - A diophantine equation involving special prime numbers
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 1
SP - 151
EP - 176
AB - Let $[{\cdot }]$ be the floor function. In this paper, we prove by asymptotic formula that when $1<c<\frac{3441}{2539}$, then every sufficiently large positive integer $N$ can be represented in the form \[ N=[p^c_1]+[p^c_2]+[p^c_3]+[p^c_4]+[p^c_5], \]
where $p_1$, $p_2$, $p_3$, $p_4$, $p_5$ are primes such that $p_1=x^2 + y^2 +1$.
LA - eng
KW - Diophantine equation; prime; exponential sum; asymptotic formula
UR - http://eudml.org/doc/299581
ER -
References
top- Arkhipov, G. I., Zhitkov, A. N., On Waring's problem with non-integral exponent, Izv. Akad. Nauk SSSR, Ser. Mat. 48 (1984), 1138-1150 Russian. (1984) Zbl0568.10027MR772109
- Baker, R., 10.7169/facm/1912, Funct. Approximatio, Comment. Math. 64 (2021), 203-250. (2021) Zbl1484.11195MR4278752DOI10.7169/facm/1912
- Buriev, K., Additive Problems with Prime Numbers: Thesis, Moscow State University, Moscow (1989), Russian. (1989) MR0946769
- Deshouillers, J.-M., 10.24033/bsmf.1762, Bull. Soc. Math. Fr. 101 (1973), 285-295 French. (1973) Zbl0292.10038MR342477DOI10.24033/bsmf.1762
- Deshouillers, J.-M., 10.4064/aa-25-4-393-403, Acta Arith. 25 (1974), 393-403 French. (1974) Zbl0278.10020MR340204DOI10.4064/aa-25-4-393-403
- Dimitrov, S. I., 10.17654/NT039030335, JP J. Algebra Number Theory Appl. 39 (2017), 335-368. (2017) Zbl1373.11032MR3846403DOI10.17654/NT039030335
- Dimitrov, S. I., 10.1007/s10986-021-09538-5, Lith. Math. J. 61 (2021), 445-459. (2021) Zbl07441577MR4344100DOI10.1007/s10986-021-09538-5
- Dimitrov, S. I., 10.1007/s11139-021-00545-1, Ramanujan J. 59 (2022), 571-607. (2022) Zbl7589232MR4480301DOI10.1007/s11139-021-00545-1
- Dimitrov, S. I., A quinary Diophantine inequality by primes with one of the form , Available at https://arxiv.org/abs/2107.04028v2 (2021), 27 pages. (2021) MR4480301
- Graham, S. W., Kolesnik, G., 10.1017/CBO9780511661976, London Mathematical Society Lecture Note Series 126. Cambridge University Press, New York (1991). (1991) Zbl0713.11001MR1145488DOI10.1017/CBO9780511661976
- Gritsenko, S. A., 10.1070/IM1993v041n03ABEH002271, Russ. Acad. Sci., Izv., Math. 41 (1993), 447-464. (1993) Zbl0810.11057MR1208161DOI10.1070/IM1993v041n03ABEH002271
- Heath-Brown, D. R., 10.1016/0022-314X(83)90044-6, J. Number Theory 16 (1983), 242-266. (1983) Zbl0513.10042MR698168DOI10.1016/0022-314X(83)90044-6
- Hilbert, D., 10.1007/BF01450405, Math. Ann. 67 (1909), 281-300 German 9999JFM99999 40.0236.03. (1909) MR1511530DOI10.1007/BF01450405
- Hooley, C., Applications of Sieve Methods to the Theory of Numbers, Cambridge Tracts in Mathematics 70. Cambridge University Press, Cambridge (1976). (1976) Zbl0327.10044MR0404173
- Hua, L.-K., 10.1093/qmath/os-9.1.68, Q. J. Math., Oxf. Ser. 9 (1938), 68-80. (1938) Zbl0018.29404MR3363459DOI10.1093/qmath/os-9.1.68
- Huxley, M. N., 10.1112/plms/s3-66.1.1, Proc. Lond. Math. Soc., III. Ser. 90 (2005), 1-41. (2005) Zbl1083.11052MR1189090DOI10.1112/plms/s3-66.1.1
- Iwaniec, H., Kowalski, E., 10.1090/coll/053, Colloquium Publications. American Mathematical Society 53. AMS, Providence (2004). (2004) Zbl1059.11001MR2061214DOI10.1090/coll/053
- Konyagin, S. V., 10.1023/A:1023279809491, Math. Notes 73 (2003), 594-597. (2003) Zbl1093.11006MR1991912DOI10.1023/A:1023279809491
- Li, S., 10.1142/S1793042119300011, Int. J. Number Theory 15 (2019), 1601-1616. (2019) Zbl1462.11084MR3994149DOI10.1142/S1793042119300011
- Linnik, Y. V., An asymptotic formula in an additive problem of Hardy and Littlewood, Izv. Akad. Nauk SSSR, Ser. Mat. 24 (1960), 629-706 Russian. (1960) Zbl0099.03501MR122796
- Sargos, P., Wu, J., 10.1023/A:1006777803163, Acta Math. Hung. 87 (2000), 333-354. (2000) Zbl0963.11045MR1771211DOI10.1023/A:1006777803163
- Segal, B. I., On a theorem analogous to Waring's theorem, Dokl. Akad. Nauk. SSSR 1933 (1933), 47-49 Russian. (1933) Zbl0008.24303
- Segal, B. I., Waring's theorem for powers with fractional and irrational exponents, Trudy Mat. Inst. Steklov. 5 (1934), 73-86 Russian. (1934) Zbl0009.29905
- Tolev, D. I., 10.4064/aa-61-3-289-306, Acta Arith. 61 (1992), 289-306. (1992) Zbl0762.11033MR1161480DOI10.4064/aa-61-3-289-306
- Zhang, M., Li, J., On a Diophantine equation with five prime variables, Available at https://arxiv.org/abs/1809.04591v2 (2019), 17 pages. (2019)
- Zhang, M., Li, J., On a Diophantine equation with three prime variables, Integers 19 (2019), Article ID A39, 13 pages. (2019) Zbl1461.11133MR3997444
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.