Maximal non-pseudovaluation subrings of an integral domain

Rahul Kumar

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 2, page 389-395
  • ISSN: 0011-4642

Abstract

top
The notion of maximal non-pseudovaluation subring of an integral domain is introduced and studied. Let R S be an extension of domains. Then R is called a maximal non-pseudovaluation subring of S if R is not a pseudovaluation subring of S , and for any ring T such that R T S , T is a pseudovaluation subring of S . We show that if S is not local, then there no such T exists between R and S . We also characterize maximal non-pseudovaluation subrings of a local integral domain.

How to cite

top

Kumar, Rahul. "Maximal non-pseudovaluation subrings of an integral domain." Czechoslovak Mathematical Journal 74.2 (2024): 389-395. <http://eudml.org/doc/299582>.

@article{Kumar2024,
abstract = {The notion of maximal non-pseudovaluation subring of an integral domain is introduced and studied. Let $R\subset S$ be an extension of domains. Then $R$ is called a maximal non-pseudovaluation subring of $S$ if $R$ is not a pseudovaluation subring of $S$, and for any ring $T$ such that $R \subset T\subset S$, $T$ is a pseudovaluation subring of $S$. We show that if $S$ is not local, then there no such $T$ exists between $R$ and $S$. We also characterize maximal non-pseudovaluation subrings of a local integral domain.},
author = {Kumar, Rahul},
journal = {Czechoslovak Mathematical Journal},
keywords = {maximal non-pseudovaluation domain; pseudovaluation subring},
language = {eng},
number = {2},
pages = {389-395},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Maximal non-pseudovaluation subrings of an integral domain},
url = {http://eudml.org/doc/299582},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Kumar, Rahul
TI - Maximal non-pseudovaluation subrings of an integral domain
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 2
SP - 389
EP - 395
AB - The notion of maximal non-pseudovaluation subring of an integral domain is introduced and studied. Let $R\subset S$ be an extension of domains. Then $R$ is called a maximal non-pseudovaluation subring of $S$ if $R$ is not a pseudovaluation subring of $S$, and for any ring $T$ such that $R \subset T\subset S$, $T$ is a pseudovaluation subring of $S$. We show that if $S$ is not local, then there no such $T$ exists between $R$ and $S$. We also characterize maximal non-pseudovaluation subrings of a local integral domain.
LA - eng
KW - maximal non-pseudovaluation domain; pseudovaluation subring
UR - http://eudml.org/doc/299582
ER -

References

top
  1. Ayache, A., Echi, O., 10.1080/00927870600650515, Commun. Algebra 34 (2006), 2467-2483. (2006) Zbl1105.13028MR2240386DOI10.1080/00927870600650515
  2. Ayache, A., Jaballah, A., 10.1007/PL00004598, Math. Z. 225 (1997), 49-65. (1997) Zbl0868.13007MR1451331DOI10.1007/PL00004598
  3. Cahen, P.-J., 10.1007/BF01261971, Arch. Math. 51 (1988), 505-514 French. (1988) Zbl0668.13005MR0973725DOI10.1007/BF01261971
  4. Davis, E. D., 10.1090/S0002-9947-1973-0325599-3, Trans. Am. Math. Soc. 182 (1973), 175-185. (1973) Zbl0272.13004MR0325599DOI10.1090/S0002-9947-1973-0325599-3
  5. Dechene, L. I., Adjacent Extensions of Rings: Ph.D. Dissertation, University of California, Riverside (1978). (1978) MR2627830
  6. Dobbs, D. E., Fontana, M., 10.1017/S0004972700021547, Bull. Aust. Math. Soc. 29 (1984), 289-302. (1984) Zbl0535.13006MR0748722DOI10.1017/S0004972700021547
  7. Ferrand, D., Olivier, J.-P., 10.1016/0021-8693(70)90020-7, J. Algebra 16 (1970), 461-471 French. (1970) Zbl0218.13011MR271079DOI10.1016/0021-8693(70)90020-7
  8. Hedstrom, J. R., Houston, E. G., 10.2140/pjm.1978.75.137, Pac. J. Math. 75 (1978), 137-147. (1978) Zbl0368.13002MR0485811DOI10.2140/pjm.1978.75.137
  9. Jarboui, N., Trabelsi, S., 10.1142/S0219498816500997, J. Algebra Appl. 15 (2016), Article ID 1650099, 16 pages. (2016) Zbl1343.13002MR3479458DOI10.1142/S0219498816500997
  10. Kumar, R., Gaur, A., 10.21136/CMJ.2020.0098-19, Czech. Math. J. 70 (2020), 1019-1032. (2020) Zbl1524.13034MR4181793DOI10.21136/CMJ.2020.0098-19
  11. Modica, M. L., Maximal Subrings: Ph.D. Dissertation, University of Chicago, Chicago (1975). (1975) MR2611729

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.