Maximal non-pseudovaluation subrings of an integral domain
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 2, page 389-395
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKumar, Rahul. "Maximal non-pseudovaluation subrings of an integral domain." Czechoslovak Mathematical Journal 74.2 (2024): 389-395. <http://eudml.org/doc/299582>.
@article{Kumar2024,
abstract = {The notion of maximal non-pseudovaluation subring of an integral domain is introduced and studied. Let $R\subset S$ be an extension of domains. Then $R$ is called a maximal non-pseudovaluation subring of $S$ if $R$ is not a pseudovaluation subring of $S$, and for any ring $T$ such that $R \subset T\subset S$, $T$ is a pseudovaluation subring of $S$. We show that if $S$ is not local, then there no such $T$ exists between $R$ and $S$. We also characterize maximal non-pseudovaluation subrings of a local integral domain.},
author = {Kumar, Rahul},
journal = {Czechoslovak Mathematical Journal},
keywords = {maximal non-pseudovaluation domain; pseudovaluation subring},
language = {eng},
number = {2},
pages = {389-395},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Maximal non-pseudovaluation subrings of an integral domain},
url = {http://eudml.org/doc/299582},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Kumar, Rahul
TI - Maximal non-pseudovaluation subrings of an integral domain
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 2
SP - 389
EP - 395
AB - The notion of maximal non-pseudovaluation subring of an integral domain is introduced and studied. Let $R\subset S$ be an extension of domains. Then $R$ is called a maximal non-pseudovaluation subring of $S$ if $R$ is not a pseudovaluation subring of $S$, and for any ring $T$ such that $R \subset T\subset S$, $T$ is a pseudovaluation subring of $S$. We show that if $S$ is not local, then there no such $T$ exists between $R$ and $S$. We also characterize maximal non-pseudovaluation subrings of a local integral domain.
LA - eng
KW - maximal non-pseudovaluation domain; pseudovaluation subring
UR - http://eudml.org/doc/299582
ER -
References
top- Ayache, A., Echi, O., 10.1080/00927870600650515, Commun. Algebra 34 (2006), 2467-2483. (2006) Zbl1105.13028MR2240386DOI10.1080/00927870600650515
- Ayache, A., Jaballah, A., 10.1007/PL00004598, Math. Z. 225 (1997), 49-65. (1997) Zbl0868.13007MR1451331DOI10.1007/PL00004598
- Cahen, P.-J., 10.1007/BF01261971, Arch. Math. 51 (1988), 505-514 French. (1988) Zbl0668.13005MR0973725DOI10.1007/BF01261971
- Davis, E. D., 10.1090/S0002-9947-1973-0325599-3, Trans. Am. Math. Soc. 182 (1973), 175-185. (1973) Zbl0272.13004MR0325599DOI10.1090/S0002-9947-1973-0325599-3
- Dechene, L. I., Adjacent Extensions of Rings: Ph.D. Dissertation, University of California, Riverside (1978). (1978) MR2627830
- Dobbs, D. E., Fontana, M., 10.1017/S0004972700021547, Bull. Aust. Math. Soc. 29 (1984), 289-302. (1984) Zbl0535.13006MR0748722DOI10.1017/S0004972700021547
- Ferrand, D., Olivier, J.-P., 10.1016/0021-8693(70)90020-7, J. Algebra 16 (1970), 461-471 French. (1970) Zbl0218.13011MR271079DOI10.1016/0021-8693(70)90020-7
- Hedstrom, J. R., Houston, E. G., 10.2140/pjm.1978.75.137, Pac. J. Math. 75 (1978), 137-147. (1978) Zbl0368.13002MR0485811DOI10.2140/pjm.1978.75.137
- Jarboui, N., Trabelsi, S., 10.1142/S0219498816500997, J. Algebra Appl. 15 (2016), Article ID 1650099, 16 pages. (2016) Zbl1343.13002MR3479458DOI10.1142/S0219498816500997
- Kumar, R., Gaur, A., 10.21136/CMJ.2020.0098-19, Czech. Math. J. 70 (2020), 1019-1032. (2020) Zbl1524.13034MR4181793DOI10.21136/CMJ.2020.0098-19
- Modica, M. L., Maximal Subrings: Ph.D. Dissertation, University of Chicago, Chicago (1975). (1975) MR2611729
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.