Maximal non valuation domains in an integral domain
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 4, page 1019-1032
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKumar, Rahul, and Gaur, Atul. "Maximal non valuation domains in an integral domain." Czechoslovak Mathematical Journal 70.4 (2020): 1019-1032. <http://eudml.org/doc/297239>.
@article{Kumar2020,
abstract = {Let $R$ be a commutative ring with unity. The notion of maximal non valuation domain in an integral domain is introduced and characterized. A proper subring $R$ of an integral domain $S$ is called a maximal non valuation domain in $S$ if $R$ is not a valuation subring of $S$, and for any ring $T$ such that $R \subset T\subset S$, $T$ is a valuation subring of $S$. For a local domain $S$, the equivalence of an integrally closed maximal non VD in $S$ and a maximal non local subring of $S$ is established. The relation between $\dim (R,S)$ and the number of rings between $R$ and $S$ is given when $R$ is a maximal non VD in $S$ and $\dim (R,S)$ is finite. For a maximal non VD $R$ in $S$ such that $R\subset R^\{\prime _S\} \subset S$ and $\dim (R,S)$ is finite, the equality of $\dim (R,S)$ and $\dim (R^\{\prime _S\},S)$ is established.},
author = {Kumar, Rahul, Gaur, Atul},
journal = {Czechoslovak Mathematical Journal},
keywords = {maximal non valuation domain; valuation subring; integrally closed subring},
language = {eng},
number = {4},
pages = {1019-1032},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Maximal non valuation domains in an integral domain},
url = {http://eudml.org/doc/297239},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Kumar, Rahul
AU - Gaur, Atul
TI - Maximal non valuation domains in an integral domain
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 4
SP - 1019
EP - 1032
AB - Let $R$ be a commutative ring with unity. The notion of maximal non valuation domain in an integral domain is introduced and characterized. A proper subring $R$ of an integral domain $S$ is called a maximal non valuation domain in $S$ if $R$ is not a valuation subring of $S$, and for any ring $T$ such that $R \subset T\subset S$, $T$ is a valuation subring of $S$. For a local domain $S$, the equivalence of an integrally closed maximal non VD in $S$ and a maximal non local subring of $S$ is established. The relation between $\dim (R,S)$ and the number of rings between $R$ and $S$ is given when $R$ is a maximal non VD in $S$ and $\dim (R,S)$ is finite. For a maximal non VD $R$ in $S$ such that $R\subset R^{\prime _S} \subset S$ and $\dim (R,S)$ is finite, the equality of $\dim (R,S)$ and $\dim (R^{\prime _S},S)$ is established.
LA - eng
KW - maximal non valuation domain; valuation subring; integrally closed subring
UR - http://eudml.org/doc/297239
ER -
References
top- Akiba, T., A note on AV-domains, Bull. Kyoto Univ. Educ., Ser. B 31 (1967), 1-3. (1967) Zbl0265.13015MR0218339
- Ayache, A., 10.1016/j.jalgebra.2010.03.009, J. Algebra 323 (2010), 3111-3123. (2010) Zbl1196.13007MR2629702DOI10.1016/j.jalgebra.2010.03.009
- Ayache, A., 10.1007/s11587-010-0102-9, Ric. Mat. 60 (2011), 193-201. (2011) Zbl1264.13012MR2852336DOI10.1007/s11587-010-0102-9
- Ayache, A., Echi, O., 10.1080/00927870600650515, Commun. Algebra 34 (2006), 2467-2483. (2006) Zbl1105.13028MR2240386DOI10.1080/00927870600650515
- Ayache, A., Jaballah, A., 10.1007/PL00004598, Math. Z. 225 (1997), 49-65. (1997) Zbl0868.13007MR1451331DOI10.1007/PL00004598
- Nasr, M. Ben, Jarboui, N., 10.5565/PUBLMAT_44100_05, Publ. Mat., Barc. 44 (2000), 157-175. (2000) Zbl0976.13007MR1775744DOI10.5565/PUBLMAT_44100_05
- Nasr, M. Ben, Jarboui, N., On maximal non-valuation subrings, Houston J. Math. 37 (2011), 47-59. (2011) Zbl1222.13007MR2786545
- Davis, E. D., 10.1090/S0002-9947-1973-0325599-3, Trans. Am. Math. Soc. 182 (1973), 175-185. (1973) Zbl0272.13004MR0325599DOI10.1090/S0002-9947-1973-0325599-3
- Dechéne, L. I., Adjacent Extensions of Rings: PhD Dissertation, University of California, Riverside (1978). (1978) MR2627830
- Dobbs, D. E., 10.2140/pjm.1976.67.353, Pac. J. Math. 67 (1976), 353-363. (1976) Zbl0326.13002MR0424795DOI10.2140/pjm.1976.67.353
- Dobbs, D. E., Fontana, M., 10.1017/S0004972700021547, Bull. Aust. Math. Soc. 29 (1984), 289-302. (1984) Zbl0535.13006MR0748722DOI10.1017/S0004972700021547
- Dobbs, D. E., Picavet, G., Picavet-L'Hermitte, M., 10.1016/j.jalgebra.2012.07.055, J. Algebra 371 (2012), 391-429. (2012) Zbl1271.13022MR2975403DOI10.1016/j.jalgebra.2012.07.055
- Fontana, M., 10.1007/BF01796550, Ann. Mat. Pura Appl., IV. Ser. 123 (1980), 331-355. (1980) Zbl0443.13001MR0581935DOI10.1007/BF01796550
- Gilbert, M. S., Extensions of Commutative Rings with Linearly Ordered Intermediate Rings: PhD Dissertation, University of Tennessee, Knoxville (1996). (1996) MR2695057
- Gilmer, R., 10.1090/S0002-9939-02-06816-8, Proc. Am. Math. Soc. 131 (2003), 2337-2346. (2003) Zbl1017.13009MR1974630DOI10.1090/S0002-9939-02-06816-8
- Hedstrom, J. R., Houston, E. G., 10.2140/pjm.1978.75.137, Pac. J. Math. 75 (1978), 137-147. (1978) Zbl0368.13002MR0485811DOI10.2140/pjm.1978.75.137
- Jarboui, N., Trabelsi, S., 10.1142/S0219498816500997, J. Algebra Appl. 15 (2016), Article ID 1650099, 16 pages. (2016) Zbl1343.13002MR3479458DOI10.1142/S0219498816500997
- Kumar, R., Gaur, A., 10.1142/S0219498818500639, J. Algebra Appl. 17 (2018), Article ID 1850063, 9 pages. (2018) Zbl1395.13006MR3786742DOI10.1142/S0219498818500639
- Mimouni, A., Samman, M., Semistar-operations on valuation domains, Focus on Commutative Rings Research Nova Science Publishers, New York (2006), 131-141. (2006) Zbl1155.13001MR2387747
- Modica, M. L., Maximal Subrings: PhD Dissertation, University of Chicago, Chicago (1975). (1975) MR2611729
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.