Maximal non valuation domains in an integral domain

Rahul Kumar; Atul Gaur

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 4, page 1019-1032
  • ISSN: 0011-4642

Abstract

top
Let R be a commutative ring with unity. The notion of maximal non valuation domain in an integral domain is introduced and characterized. A proper subring R of an integral domain S is called a maximal non valuation domain in S if R is not a valuation subring of S , and for any ring T such that R T S , T is a valuation subring of S . For a local domain S , the equivalence of an integrally closed maximal non VD in S and a maximal non local subring of S is established. The relation between dim ( R , S ) and the number of rings between R and S is given when R is a maximal non VD in S and dim ( R , S ) is finite. For a maximal non VD R in S such that R R ' S S and dim ( R , S ) is finite, the equality of dim ( R , S ) and dim ( R ' S , S ) is established.

How to cite

top

Kumar, Rahul, and Gaur, Atul. "Maximal non valuation domains in an integral domain." Czechoslovak Mathematical Journal 70.4 (2020): 1019-1032. <http://eudml.org/doc/297239>.

@article{Kumar2020,
abstract = {Let $R$ be a commutative ring with unity. The notion of maximal non valuation domain in an integral domain is introduced and characterized. A proper subring $R$ of an integral domain $S$ is called a maximal non valuation domain in $S$ if $R$ is not a valuation subring of $S$, and for any ring $T$ such that $R \subset T\subset S$, $T$ is a valuation subring of $S$. For a local domain $S$, the equivalence of an integrally closed maximal non VD in $S$ and a maximal non local subring of $S$ is established. The relation between $\dim (R,S)$ and the number of rings between $R$ and $S$ is given when $R$ is a maximal non VD in $S$ and $\dim (R,S)$ is finite. For a maximal non VD $R$ in $S$ such that $R\subset R^\{\prime _S\} \subset S$ and $\dim (R,S)$ is finite, the equality of $\dim (R,S)$ and $\dim (R^\{\prime _S\},S)$ is established.},
author = {Kumar, Rahul, Gaur, Atul},
journal = {Czechoslovak Mathematical Journal},
keywords = {maximal non valuation domain; valuation subring; integrally closed subring},
language = {eng},
number = {4},
pages = {1019-1032},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Maximal non valuation domains in an integral domain},
url = {http://eudml.org/doc/297239},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Kumar, Rahul
AU - Gaur, Atul
TI - Maximal non valuation domains in an integral domain
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 4
SP - 1019
EP - 1032
AB - Let $R$ be a commutative ring with unity. The notion of maximal non valuation domain in an integral domain is introduced and characterized. A proper subring $R$ of an integral domain $S$ is called a maximal non valuation domain in $S$ if $R$ is not a valuation subring of $S$, and for any ring $T$ such that $R \subset T\subset S$, $T$ is a valuation subring of $S$. For a local domain $S$, the equivalence of an integrally closed maximal non VD in $S$ and a maximal non local subring of $S$ is established. The relation between $\dim (R,S)$ and the number of rings between $R$ and $S$ is given when $R$ is a maximal non VD in $S$ and $\dim (R,S)$ is finite. For a maximal non VD $R$ in $S$ such that $R\subset R^{\prime _S} \subset S$ and $\dim (R,S)$ is finite, the equality of $\dim (R,S)$ and $\dim (R^{\prime _S},S)$ is established.
LA - eng
KW - maximal non valuation domain; valuation subring; integrally closed subring
UR - http://eudml.org/doc/297239
ER -

References

top
  1. Akiba, T., A note on AV-domains, Bull. Kyoto Univ. Educ., Ser. B 31 (1967), 1-3. (1967) Zbl0265.13015MR0218339
  2. Ayache, A., 10.1016/j.jalgebra.2010.03.009, J. Algebra 323 (2010), 3111-3123. (2010) Zbl1196.13007MR2629702DOI10.1016/j.jalgebra.2010.03.009
  3. Ayache, A., 10.1007/s11587-010-0102-9, Ric. Mat. 60 (2011), 193-201. (2011) Zbl1264.13012MR2852336DOI10.1007/s11587-010-0102-9
  4. Ayache, A., Echi, O., 10.1080/00927870600650515, Commun. Algebra 34 (2006), 2467-2483. (2006) Zbl1105.13028MR2240386DOI10.1080/00927870600650515
  5. Ayache, A., Jaballah, A., 10.1007/PL00004598, Math. Z. 225 (1997), 49-65. (1997) Zbl0868.13007MR1451331DOI10.1007/PL00004598
  6. Nasr, M. Ben, Jarboui, N., 10.5565/PUBLMAT_44100_05, Publ. Mat., Barc. 44 (2000), 157-175. (2000) Zbl0976.13007MR1775744DOI10.5565/PUBLMAT_44100_05
  7. Nasr, M. Ben, Jarboui, N., On maximal non-valuation subrings, Houston J. Math. 37 (2011), 47-59. (2011) Zbl1222.13007MR2786545
  8. Davis, E. D., 10.1090/S0002-9947-1973-0325599-3, Trans. Am. Math. Soc. 182 (1973), 175-185. (1973) Zbl0272.13004MR0325599DOI10.1090/S0002-9947-1973-0325599-3
  9. Dechéne, L. I., Adjacent Extensions of Rings: PhD Dissertation, University of California, Riverside (1978). (1978) MR2627830
  10. Dobbs, D. E., 10.2140/pjm.1976.67.353, Pac. J. Math. 67 (1976), 353-363. (1976) Zbl0326.13002MR0424795DOI10.2140/pjm.1976.67.353
  11. Dobbs, D. E., Fontana, M., 10.1017/S0004972700021547, Bull. Aust. Math. Soc. 29 (1984), 289-302. (1984) Zbl0535.13006MR0748722DOI10.1017/S0004972700021547
  12. Dobbs, D. E., Picavet, G., Picavet-L'Hermitte, M., 10.1016/j.jalgebra.2012.07.055, J. Algebra 371 (2012), 391-429. (2012) Zbl1271.13022MR2975403DOI10.1016/j.jalgebra.2012.07.055
  13. Fontana, M., 10.1007/BF01796550, Ann. Mat. Pura Appl., IV. Ser. 123 (1980), 331-355. (1980) Zbl0443.13001MR0581935DOI10.1007/BF01796550
  14. Gilbert, M. S., Extensions of Commutative Rings with Linearly Ordered Intermediate Rings: PhD Dissertation, University of Tennessee, Knoxville (1996). (1996) MR2695057
  15. Gilmer, R., 10.1090/S0002-9939-02-06816-8, Proc. Am. Math. Soc. 131 (2003), 2337-2346. (2003) Zbl1017.13009MR1974630DOI10.1090/S0002-9939-02-06816-8
  16. Hedstrom, J. R., Houston, E. G., 10.2140/pjm.1978.75.137, Pac. J. Math. 75 (1978), 137-147. (1978) Zbl0368.13002MR0485811DOI10.2140/pjm.1978.75.137
  17. Jarboui, N., Trabelsi, S., 10.1142/S0219498816500997, J. Algebra Appl. 15 (2016), Article ID 1650099, 16 pages. (2016) Zbl1343.13002MR3479458DOI10.1142/S0219498816500997
  18. Kumar, R., Gaur, A., 10.1142/S0219498818500639, J. Algebra Appl. 17 (2018), Article ID 1850063, 9 pages. (2018) Zbl1395.13006MR3786742DOI10.1142/S0219498818500639
  19. Mimouni, A., Samman, M., Semistar-operations on valuation domains, Focus on Commutative Rings Research Nova Science Publishers, New York (2006), 131-141. (2006) Zbl1155.13001MR2387747
  20. Modica, M. L., Maximal Subrings: PhD Dissertation, University of Chicago, Chicago (1975). (1975) MR2611729

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.