On monogenity of certain pure number fields of degrees
Mathematica Bohemica (2024)
- Volume: 149, Issue: 2, page 167-183
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topBen Yakkou, Hamid, and Didi, Jalal. "On monogenity of certain pure number fields of degrees $2^r\cdot 3^k\cdot 7^s$." Mathematica Bohemica 149.2 (2024): 167-183. <http://eudml.org/doc/299586>.
@article{BenYakkou2024,
abstract = {Let $K = \mathbb \{Q\} (\alpha ) $ be a pure number field generated by a complex root $\alpha $ of a monic irreducible polynomial $ F(x) = x^\{2^r\cdot 3^k\cdot 7^s\} -m \in \mathbb \{Z\}[x]$, where $r$, $k$, $s$ are three positive natural integers. The purpose of this paper is to study the monogenity of $K$. Our results are illustrated by some examples.},
author = {Ben Yakkou, Hamid, Didi, Jalal},
journal = {Mathematica Bohemica},
keywords = {power integral basis; theorem of Ore; prime ideal factorization; common index divisor},
language = {eng},
number = {2},
pages = {167-183},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On monogenity of certain pure number fields of degrees $2^r\cdot 3^k\cdot 7^s$},
url = {http://eudml.org/doc/299586},
volume = {149},
year = {2024},
}
TY - JOUR
AU - Ben Yakkou, Hamid
AU - Didi, Jalal
TI - On monogenity of certain pure number fields of degrees $2^r\cdot 3^k\cdot 7^s$
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 2
SP - 167
EP - 183
AB - Let $K = \mathbb {Q} (\alpha ) $ be a pure number field generated by a complex root $\alpha $ of a monic irreducible polynomial $ F(x) = x^{2^r\cdot 3^k\cdot 7^s} -m \in \mathbb {Z}[x]$, where $r$, $k$, $s$ are three positive natural integers. The purpose of this paper is to study the monogenity of $K$. Our results are illustrated by some examples.
LA - eng
KW - power integral basis; theorem of Ore; prime ideal factorization; common index divisor
UR - http://eudml.org/doc/299586
ER -
References
top- Ahmad, S., Nakahara, T., Hameed, A., 10.1142/S0218196716500259, Int. J. Algebra Comput. 26 (2016), 577-583. (2016) Zbl1404.11124MR3506350DOI10.1142/S0218196716500259
- Ahmad, S., Nakahara, T., Husnine, S. M., 10.1142/S1793042114500778, Int. J. Number Theory 10 (2014), 2257-2265. (2014) Zbl1316.11094MR3273484DOI10.1142/S1793042114500778
- Yakkou, H. Ben, Chillali, A., Fadil, L. El, 10.1080/00927872.2021.1883642, Commun. Algebra 49 (2021), 2916-2926. (2021) Zbl1471.11260MR4274858DOI10.1080/00927872.2021.1883642
- Bilu, Y., Gaál, I., Győry, K., 10.4064/aa115-1-7, Acta Arith. 115 (2004), 85-96. (2004) Zbl1064.11084MR2102808DOI10.4064/aa115-1-7
- Cohen, H., 10.1007/978-3-662-02945-9, Graduate Texts in Mathematics 138. Springer, Berlin (1993). (1993) Zbl0786.11071MR1228206DOI10.1007/978-3-662-02945-9
- Dedekind, R., Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Congruenzen, Abh. Akad. Wiss. Gött. 23 (1878), 3-38 German. (1878)
- Fadil, L. El, 10.4064/cm8574-6-2021, Colloq. Math. 169 (2022), 307-317. (2022) Zbl07558464MR4443656DOI10.4064/cm8574-6-2021
- Fadil, L. El, Yakkou, H. Ben, Didi, J., 10.1007/s40590-021-00388-2, Bol. Soc. Mat. Mex., III. Ser. 27 (2021), Article ID 81, 10 pages. (2021) Zbl1478.11124MR4322465DOI10.1007/s40590-021-00388-2
- Fadil, L. El, Montes, J., Nart, E., 10.1142/S0219498812500739, J. Algebra Appl. 11 (2012), Article ID 1250073, 33 pages. (2012) Zbl1297.11134MR2959422DOI10.1142/S0219498812500739
- Fadil, L. El, Najim, A., On power integral bases for certain pure number fields defined by , Available at https://arxiv.org/abs/2106.01252 (2021), 12 pages. (2021) MR4361576
- Gaál, I., 10.1007/978-3-030-23865-0, Birkhäuser, Cham (2019). (2019) Zbl1465.11090MR3970246DOI10.1007/978-3-030-23865-0
- Gaál, I., Győry, K., 10.4064/aa-89-4-379-396, Acta Arith. 89 (1999), 379-396. (1999) Zbl0930.11091MR1703860DOI10.4064/aa-89-4-379-396
- Gaál, I., Remete, L., Binomial Thue equations and power integral bases in pure quartic fields, JP J. Algebra Number Theory Appl. 32 (2014), 49-61. (2014) Zbl1295.11120
- Gaál, I., Remete, L., 10.1016/j.jnt.2016.09.009, J. Number Theory 173 (2017), 129-146. (2017) Zbl1419.11118MR3581912DOI10.1016/j.jnt.2016.09.009
- Gaál, I., Remete, L., 10.1216/RMJ-2017-47-3-817, Rocky Mt. J. Math. 47 (2017), 817-824. (2017) Zbl1381.11102MR3682150DOI10.1216/RMJ-2017-47-3-817
- Gassert, T. A., 10.51286/albjm/1495919797, Albanian J. Math. 11 (2017), 3-12. (2017) Zbl1392.11082MR3659215DOI10.51286/albjm/1495919797
- Guàrdia, J., Montes, J., Nart, E., 10.1090/S0002-9947-2011-05442-5, Trans. Am. Math. Soc. 364 (2012), 361-416. (2012) Zbl1252.11091MR2833586DOI10.1090/S0002-9947-2011-05442-5
- Hameed, A., Nakahara, T., Integral bases and relative monogenity of pure octic fields, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 58 (2015), 419-433. (2015) Zbl1363.11094MR3443598
- Hasse, H., Zahlentheorie, Akademie-Verlag, Berlin (1963), German. (1963) Zbl1038.11500MR0153659
- Jakhar, A., Khanduja, S., Sangwan, N., 10.4064/cm8257-11-2020, Colloq. Math. 167 (2022), 149-157. (2022) Zbl1491.11099MR4339462DOI10.4064/cm8257-11-2020
- Narkiewicz, W., 10.1007/978-3-662-07001-7, Springer Monographs in Mathematics. Springer, Berlin (2004). (2004) Zbl1159.11039MR2078267DOI10.1007/978-3-662-07001-7
- Ore, "O., 10.1007/BF01459087, Math. Ann. 99 (1928), 84-117 German 9999JFM99999 54.0191.02. (1928) MR1512440DOI10.1007/BF01459087
- Pethő, A., Pohst, M. E., 10.4064/aa153-4-4, Acta. Arith. 153 (2012), 393-414. (2012) Zbl1255.11052MR2925379DOI10.4064/aa153-4-4
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.