On monogenity of certain pure number fields of degrees 2 r · 3 k · 7 s

Hamid Ben Yakkou; Jalal Didi

Mathematica Bohemica (2024)

  • Volume: 149, Issue: 2, page 167-183
  • ISSN: 0862-7959

Abstract

top
Let K = ( α ) be a pure number field generated by a complex root α of a monic irreducible polynomial F ( x ) = x 2 r · 3 k · 7 s - m [ x ] , where r , k , s are three positive natural integers. The purpose of this paper is to study the monogenity of K . Our results are illustrated by some examples.

How to cite

top

Ben Yakkou, Hamid, and Didi, Jalal. "On monogenity of certain pure number fields of degrees $2^r\cdot 3^k\cdot 7^s$." Mathematica Bohemica 149.2 (2024): 167-183. <http://eudml.org/doc/299586>.

@article{BenYakkou2024,
abstract = {Let $K = \mathbb \{Q\} (\alpha ) $ be a pure number field generated by a complex root $\alpha $ of a monic irreducible polynomial $ F(x) = x^\{2^r\cdot 3^k\cdot 7^s\} -m \in \mathbb \{Z\}[x]$, where $r$, $k$, $s$ are three positive natural integers. The purpose of this paper is to study the monogenity of $K$. Our results are illustrated by some examples.},
author = {Ben Yakkou, Hamid, Didi, Jalal},
journal = {Mathematica Bohemica},
keywords = {power integral basis; theorem of Ore; prime ideal factorization; common index divisor},
language = {eng},
number = {2},
pages = {167-183},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On monogenity of certain pure number fields of degrees $2^r\cdot 3^k\cdot 7^s$},
url = {http://eudml.org/doc/299586},
volume = {149},
year = {2024},
}

TY - JOUR
AU - Ben Yakkou, Hamid
AU - Didi, Jalal
TI - On monogenity of certain pure number fields of degrees $2^r\cdot 3^k\cdot 7^s$
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 2
SP - 167
EP - 183
AB - Let $K = \mathbb {Q} (\alpha ) $ be a pure number field generated by a complex root $\alpha $ of a monic irreducible polynomial $ F(x) = x^{2^r\cdot 3^k\cdot 7^s} -m \in \mathbb {Z}[x]$, where $r$, $k$, $s$ are three positive natural integers. The purpose of this paper is to study the monogenity of $K$. Our results are illustrated by some examples.
LA - eng
KW - power integral basis; theorem of Ore; prime ideal factorization; common index divisor
UR - http://eudml.org/doc/299586
ER -

References

top
  1. Ahmad, S., Nakahara, T., Hameed, A., 10.1142/S0218196716500259, Int. J. Algebra Comput. 26 (2016), 577-583. (2016) Zbl1404.11124MR3506350DOI10.1142/S0218196716500259
  2. Ahmad, S., Nakahara, T., Husnine, S. M., 10.1142/S1793042114500778, Int. J. Number Theory 10 (2014), 2257-2265. (2014) Zbl1316.11094MR3273484DOI10.1142/S1793042114500778
  3. Yakkou, H. Ben, Chillali, A., Fadil, L. El, 10.1080/00927872.2021.1883642, Commun. Algebra 49 (2021), 2916-2926. (2021) Zbl1471.11260MR4274858DOI10.1080/00927872.2021.1883642
  4. Bilu, Y., Gaál, I., Győry, K., 10.4064/aa115-1-7, Acta Arith. 115 (2004), 85-96. (2004) Zbl1064.11084MR2102808DOI10.4064/aa115-1-7
  5. Cohen, H., 10.1007/978-3-662-02945-9, Graduate Texts in Mathematics 138. Springer, Berlin (1993). (1993) Zbl0786.11071MR1228206DOI10.1007/978-3-662-02945-9
  6. Dedekind, R., Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Congruenzen, Abh. Akad. Wiss. Gött. 23 (1878), 3-38 German. (1878) 
  7. Fadil, L. El, 10.4064/cm8574-6-2021, Colloq. Math. 169 (2022), 307-317. (2022) Zbl07558464MR4443656DOI10.4064/cm8574-6-2021
  8. Fadil, L. El, Yakkou, H. Ben, Didi, J., 10.1007/s40590-021-00388-2, Bol. Soc. Mat. Mex., III. Ser. 27 (2021), Article ID 81, 10 pages. (2021) Zbl1478.11124MR4322465DOI10.1007/s40590-021-00388-2
  9. Fadil, L. El, Montes, J., Nart, E., 10.1142/S0219498812500739, J. Algebra Appl. 11 (2012), Article ID 1250073, 33 pages. (2012) Zbl1297.11134MR2959422DOI10.1142/S0219498812500739
  10. Fadil, L. El, Najim, A., On power integral bases for certain pure number fields defined by x 2 u · 3 v - m , Available at https://arxiv.org/abs/2106.01252 (2021), 12 pages. (2021) MR4361576
  11. Gaál, I., 10.1007/978-3-030-23865-0, Birkhäuser, Cham (2019). (2019) Zbl1465.11090MR3970246DOI10.1007/978-3-030-23865-0
  12. Gaál, I., Győry, K., 10.4064/aa-89-4-379-396, Acta Arith. 89 (1999), 379-396. (1999) Zbl0930.11091MR1703860DOI10.4064/aa-89-4-379-396
  13. Gaál, I., Remete, L., Binomial Thue equations and power integral bases in pure quartic fields, JP J. Algebra Number Theory Appl. 32 (2014), 49-61. (2014) Zbl1295.11120
  14. Gaál, I., Remete, L., 10.1016/j.jnt.2016.09.009, J. Number Theory 173 (2017), 129-146. (2017) Zbl1419.11118MR3581912DOI10.1016/j.jnt.2016.09.009
  15. Gaál, I., Remete, L., 10.1216/RMJ-2017-47-3-817, Rocky Mt. J. Math. 47 (2017), 817-824. (2017) Zbl1381.11102MR3682150DOI10.1216/RMJ-2017-47-3-817
  16. Gassert, T. A., 10.51286/albjm/1495919797, Albanian J. Math. 11 (2017), 3-12. (2017) Zbl1392.11082MR3659215DOI10.51286/albjm/1495919797
  17. Guàrdia, J., Montes, J., Nart, E., 10.1090/S0002-9947-2011-05442-5, Trans. Am. Math. Soc. 364 (2012), 361-416. (2012) Zbl1252.11091MR2833586DOI10.1090/S0002-9947-2011-05442-5
  18. Hameed, A., Nakahara, T., Integral bases and relative monogenity of pure octic fields, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 58 (2015), 419-433. (2015) Zbl1363.11094MR3443598
  19. Hasse, H., Zahlentheorie, Akademie-Verlag, Berlin (1963), German. (1963) Zbl1038.11500MR0153659
  20. Jakhar, A., Khanduja, S., Sangwan, N., 10.4064/cm8257-11-2020, Colloq. Math. 167 (2022), 149-157. (2022) Zbl1491.11099MR4339462DOI10.4064/cm8257-11-2020
  21. Narkiewicz, W., 10.1007/978-3-662-07001-7, Springer Monographs in Mathematics. Springer, Berlin (2004). (2004) Zbl1159.11039MR2078267DOI10.1007/978-3-662-07001-7
  22. Ore, "O., 10.1007/BF01459087, Math. Ann. 99 (1928), 84-117 German 9999JFM99999 54.0191.02. (1928) MR1512440DOI10.1007/BF01459087
  23. Pethő, A., Pohst, M. E., 10.4064/aa153-4-4, Acta. Arith. 153 (2012), 393-414. (2012) Zbl1255.11052MR2925379DOI10.4064/aa153-4-4

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.