Maxwell-Schrödinger equations in singular electromagnetic field

Qihong Shi; Yaqian Jia; Jianwei Yang

Applications of Mathematics (2024)

  • Volume: 69, Issue: 4, page 437-450
  • ISSN: 0862-7940

Abstract

top
We investigate the Cauchy problem of the one dimensional Maxwell-Schrödinger (MS) system under the Lorenz gauge condition. Different from the classical case, we consider the electromagnetic and electrostatic potentials which are growing at space infinity. More precisely, the electrostatic potential is allowed to grow linearly, while for the electromagnetic potential the growth is sublinear. Based on the energy estimates and the gauge transformation, we prove the global existence and the uniqueness of the weak solutions to this system.

How to cite

top

Shi, Qihong, Jia, Yaqian, and Yang, Jianwei. "Maxwell-Schrödinger equations in singular electromagnetic field." Applications of Mathematics 69.4 (2024): 437-450. <http://eudml.org/doc/299591>.

@article{Shi2024,
abstract = {We investigate the Cauchy problem of the one dimensional Maxwell-Schrödinger (MS) system under the Lorenz gauge condition. Different from the classical case, we consider the electromagnetic and electrostatic potentials which are growing at space infinity. More precisely, the electrostatic potential is allowed to grow linearly, while for the electromagnetic potential the growth is sublinear. Based on the energy estimates and the gauge transformation, we prove the global existence and the uniqueness of the weak solutions to this system.},
author = {Shi, Qihong, Jia, Yaqian, Yang, Jianwei},
journal = {Applications of Mathematics},
keywords = {MS system; global solvability; energy space; Lorenz gauge},
language = {eng},
number = {4},
pages = {437-450},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Maxwell-Schrödinger equations in singular electromagnetic field},
url = {http://eudml.org/doc/299591},
volume = {69},
year = {2024},
}

TY - JOUR
AU - Shi, Qihong
AU - Jia, Yaqian
AU - Yang, Jianwei
TI - Maxwell-Schrödinger equations in singular electromagnetic field
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 4
SP - 437
EP - 450
AB - We investigate the Cauchy problem of the one dimensional Maxwell-Schrödinger (MS) system under the Lorenz gauge condition. Different from the classical case, we consider the electromagnetic and electrostatic potentials which are growing at space infinity. More precisely, the electrostatic potential is allowed to grow linearly, while for the electromagnetic potential the growth is sublinear. Based on the energy estimates and the gauge transformation, we prove the global existence and the uniqueness of the weak solutions to this system.
LA - eng
KW - MS system; global solvability; energy space; Lorenz gauge
UR - http://eudml.org/doc/299591
ER -

References

top
  1. Antonelli, P., Marcati, P., Scandone, R., 10.2422/2036-2145.202010_033, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 23 (2022), 1293-1324. (2022) Zbl1498.35412MR4497745DOI10.2422/2036-2145.202010_033
  2. Antonelli, P., Michelangeli, A., Scandone, R., 10.1007/s00033-018-0938-5, Z. Angew. Math. Phys. 69 (2018), Article ID 46, 30 pages. (2018) Zbl1392.35278MR3778934DOI10.1007/s00033-018-0938-5
  3. Aoki, K., Guimard, D., Nishioka, M., Nomura, M., Iwamoto, S., Arakawa, Y., 10.1038/nphoton.2008.202, Nature Photonics 2 (2008), 688-692. (2008) DOI10.1038/nphoton.2008.202
  4. Ballentine, L. E., 10.1142/3142, World Scientific, Singapore (2014). (2014) Zbl0997.81501MR1629320DOI10.1142/3142
  5. Bao, W., Cai, Y., 10.1137/11083080, SIAM J. Numer. Anal. 50 (2012), 492-521. (2012) Zbl1246.35188MR2914273DOI10.1137/11083080
  6. Bejenaru, I., Tataru, D., 10.1007/s00220-009-0765-9, Commun. Math. Phys. 288 (2009), 145-198. (2009) Zbl1171.81006MR2491621DOI10.1007/s00220-009-0765-9
  7. Carles, R., 10.1137/S0036141002416936, SIAM J. Math. Anal. 35 (2003), 823-843. (2003) Zbl1054.35090MR2049023DOI10.1137/S0036141002416936
  8. Colin, M., Watanabe, T., 10.5802/ahl.27, Ann. Henri Lebesgue 3 (2020), 67-85. (2020) Zbl1483.35203MR4060851DOI10.5802/ahl.27
  9. Greiner, W., Reinhardt, J., 10.1007/978-3-662-05246-4, Springer, Berlin (2003). (2003) Zbl1092.81066MR1987453DOI10.1007/978-3-662-05246-4
  10. Guo, Y., Nakamitsu, K., Strauss, W., 10.1007/BF02099444, Commun. Math. Phys. 170 (1995), 181-196. (1995) Zbl0830.35131MR1331696DOI10.1007/BF02099444
  11. Hayashi, N., Ozawa, T., 10.57262/die/1369330439, Differ. Integral Equ. 7 (1994), 453-461. (1994) Zbl0803.35137MR1255899DOI10.57262/die/1369330439
  12. Komech, A. I., 10.1007/s40316-021-00179-1, Ann. Math. Qué. 46 (2022), 139-159. (2022) Zbl1498.35456MR4396073DOI10.1007/s40316-021-00179-1
  13. Liu, Y., Wada, T., 10.1016/j.jde.2020.02.013, J. Differ. Equations 269 (2020), 2798-2852. (2020) Zbl1434.35214MR4097235DOI10.1016/j.jde.2020.02.013
  14. Lourenço-Martins, H., 10.1016/bs.aiep.2022.05.001, Plasmon Coupling Physics Advances in Imaging and Electron Physics 222. Elsevier, Amsterdam (2022), 1-82. (2022) DOI10.1016/bs.aiep.2022.05.001
  15. Nakamitsu, K., Tsutsumi, M., 10.1063/1.527363, J. Math. Phys. 27 (1986), 211-216. (1986) Zbl0606.35015MR0816434DOI10.1063/1.527363
  16. Nakamura, M., Wada, T., 10.1007/s00208-005-0637-3, Math. Ann. 332 (2005), 565-604. (2005) Zbl1075.35065MR2181763DOI10.1007/s00208-005-0637-3
  17. Nakamura, M., Wada, T., 10.1007/s00220-007-0337-9, Commun. Math. Phys. 276 (2007), 315-339. (2007) Zbl1134.81020MR2346392DOI10.1007/s00220-007-0337-9
  18. Oh, Y.-G., 10.1016/0022-0396(89)90123-X, J. Differ. Equations 81 (1989), 255-274. (1989) Zbl0703.35158MR1016082DOI10.1016/0022-0396(89)90123-X
  19. Scandone, R., 10.1007/978-3-031-24311-0_6, Harmonic Analysis and Partial Differential Equations Trends in Mathematics. Birkhäuser, Cham (2022), 91-96. (2022) MR4696593DOI10.1007/978-3-031-24311-0_6
  20. Shi, Q., 10.57262/die036-0910-837, Differ. Integral Equ. 36 (2023), 837-858. (2023) Zbl07729567MR4597865DOI10.57262/die036-0910-837
  21. Shi, Q., Jia, Y., Cao, J., 10.1016/j.aml.2022.108038, Appl. Math. Lett. 131 (2022), Article ID 108038, 7 pages. (2022) Zbl1487.35193MR4395960DOI10.1016/j.aml.2022.108038
  22. Shi, Q., Peng, C., Wang, Q., 10.3934/dcdsb.2021304, Discrete Contin. Dyn. Syst., Ser. B 27 (2022), 6009-6022. (2022) Zbl1496.35368MR4470533DOI10.3934/dcdsb.2021304
  23. Shukla, P. K., Eliasson, B., 10.3367/UFNe.0180.201001b.0055, Phys. Usp. 53 (2010), 51-76. (2010) DOI10.3367/UFNe.0180.201001b.0055
  24. Shukla, P. K., Eliasson, B., 10.1103/RevModPhys.83.885, Rev. Mod. Phys. 83 (2011), 885-906. (2011) DOI10.1103/RevModPhys.83.885
  25. M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, T. Yamamoto, Y. Nakata, 10.1088/0022-3727/38/13/008, J. Phys. D, Appl. Phys. 38 (2005), 2126-2134. (2005) DOI10.1088/0022-3727/38/13/008
  26. Tsutsumi, Y., 10.1007/BF02097027, Commun. Math. Phys. 151 (1993), 543-576. (1993) Zbl0766.35061MR1207265DOI10.1007/BF02097027
  27. Tsutsumi, Y., 10.14492/hokmj/1380892611, Hokkaido Math. J. 24 (1995), 617-639. (1995) Zbl0840.35091MR1357033DOI10.14492/hokmj/1380892611
  28. Tsutsumi, M., Nakamitsu, K., 10.1201/9781003072683, Physical Mathematics and Nonlinear Partial Differential Equations Lecture Notes in Pure and Applied Mathematics 102. Marcel Dekker, New York (1985), 139-155. (1985) Zbl0575.35061MR0826831DOI10.1201/9781003072683
  29. Wada, T., 10.1016/j.jfa.2012.04.010, J. Funct. Anal. 263 (2012), 1-24. (2012) Zbl1251.35095MR2920838DOI10.1016/j.jfa.2012.04.010
  30. Yajima, K., 10.1007/BF01212420, Commun. Math. Phys. 110 (1987), 415-426. (1987) Zbl0638.35036MR0891945DOI10.1007/BF01212420
  31. Yajima, K., 10.1007/BF02820459, J. Anal. Math. 56 (1991), 29-76. (1991) Zbl0739.35083MR1243098DOI10.1007/BF02820459

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.