Maxwell-Schrödinger equations in singular electromagnetic field
Qihong Shi; Yaqian Jia; Jianwei Yang
Applications of Mathematics (2024)
- Volume: 69, Issue: 4, page 437-450
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topShi, Qihong, Jia, Yaqian, and Yang, Jianwei. "Maxwell-Schrödinger equations in singular electromagnetic field." Applications of Mathematics 69.4 (2024): 437-450. <http://eudml.org/doc/299591>.
@article{Shi2024,
abstract = {We investigate the Cauchy problem of the one dimensional Maxwell-Schrödinger (MS) system under the Lorenz gauge condition. Different from the classical case, we consider the electromagnetic and electrostatic potentials which are growing at space infinity. More precisely, the electrostatic potential is allowed to grow linearly, while for the electromagnetic potential the growth is sublinear. Based on the energy estimates and the gauge transformation, we prove the global existence and the uniqueness of the weak solutions to this system.},
author = {Shi, Qihong, Jia, Yaqian, Yang, Jianwei},
journal = {Applications of Mathematics},
keywords = {MS system; global solvability; energy space; Lorenz gauge},
language = {eng},
number = {4},
pages = {437-450},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Maxwell-Schrödinger equations in singular electromagnetic field},
url = {http://eudml.org/doc/299591},
volume = {69},
year = {2024},
}
TY - JOUR
AU - Shi, Qihong
AU - Jia, Yaqian
AU - Yang, Jianwei
TI - Maxwell-Schrödinger equations in singular electromagnetic field
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 4
SP - 437
EP - 450
AB - We investigate the Cauchy problem of the one dimensional Maxwell-Schrödinger (MS) system under the Lorenz gauge condition. Different from the classical case, we consider the electromagnetic and electrostatic potentials which are growing at space infinity. More precisely, the electrostatic potential is allowed to grow linearly, while for the electromagnetic potential the growth is sublinear. Based on the energy estimates and the gauge transformation, we prove the global existence and the uniqueness of the weak solutions to this system.
LA - eng
KW - MS system; global solvability; energy space; Lorenz gauge
UR - http://eudml.org/doc/299591
ER -
References
top- Antonelli, P., Marcati, P., Scandone, R., 10.2422/2036-2145.202010_033, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 23 (2022), 1293-1324. (2022) Zbl1498.35412MR4497745DOI10.2422/2036-2145.202010_033
- Antonelli, P., Michelangeli, A., Scandone, R., 10.1007/s00033-018-0938-5, Z. Angew. Math. Phys. 69 (2018), Article ID 46, 30 pages. (2018) Zbl1392.35278MR3778934DOI10.1007/s00033-018-0938-5
- Aoki, K., Guimard, D., Nishioka, M., Nomura, M., Iwamoto, S., Arakawa, Y., 10.1038/nphoton.2008.202, Nature Photonics 2 (2008), 688-692. (2008) DOI10.1038/nphoton.2008.202
- Ballentine, L. E., 10.1142/3142, World Scientific, Singapore (2014). (2014) Zbl0997.81501MR1629320DOI10.1142/3142
- Bao, W., Cai, Y., 10.1137/11083080, SIAM J. Numer. Anal. 50 (2012), 492-521. (2012) Zbl1246.35188MR2914273DOI10.1137/11083080
- Bejenaru, I., Tataru, D., 10.1007/s00220-009-0765-9, Commun. Math. Phys. 288 (2009), 145-198. (2009) Zbl1171.81006MR2491621DOI10.1007/s00220-009-0765-9
- Carles, R., 10.1137/S0036141002416936, SIAM J. Math. Anal. 35 (2003), 823-843. (2003) Zbl1054.35090MR2049023DOI10.1137/S0036141002416936
- Colin, M., Watanabe, T., 10.5802/ahl.27, Ann. Henri Lebesgue 3 (2020), 67-85. (2020) Zbl1483.35203MR4060851DOI10.5802/ahl.27
- Greiner, W., Reinhardt, J., 10.1007/978-3-662-05246-4, Springer, Berlin (2003). (2003) Zbl1092.81066MR1987453DOI10.1007/978-3-662-05246-4
- Guo, Y., Nakamitsu, K., Strauss, W., 10.1007/BF02099444, Commun. Math. Phys. 170 (1995), 181-196. (1995) Zbl0830.35131MR1331696DOI10.1007/BF02099444
- Hayashi, N., Ozawa, T., 10.57262/die/1369330439, Differ. Integral Equ. 7 (1994), 453-461. (1994) Zbl0803.35137MR1255899DOI10.57262/die/1369330439
- Komech, A. I., 10.1007/s40316-021-00179-1, Ann. Math. Qué. 46 (2022), 139-159. (2022) Zbl1498.35456MR4396073DOI10.1007/s40316-021-00179-1
- Liu, Y., Wada, T., 10.1016/j.jde.2020.02.013, J. Differ. Equations 269 (2020), 2798-2852. (2020) Zbl1434.35214MR4097235DOI10.1016/j.jde.2020.02.013
- Lourenço-Martins, H., 10.1016/bs.aiep.2022.05.001, Plasmon Coupling Physics Advances in Imaging and Electron Physics 222. Elsevier, Amsterdam (2022), 1-82. (2022) DOI10.1016/bs.aiep.2022.05.001
- Nakamitsu, K., Tsutsumi, M., 10.1063/1.527363, J. Math. Phys. 27 (1986), 211-216. (1986) Zbl0606.35015MR0816434DOI10.1063/1.527363
- Nakamura, M., Wada, T., 10.1007/s00208-005-0637-3, Math. Ann. 332 (2005), 565-604. (2005) Zbl1075.35065MR2181763DOI10.1007/s00208-005-0637-3
- Nakamura, M., Wada, T., 10.1007/s00220-007-0337-9, Commun. Math. Phys. 276 (2007), 315-339. (2007) Zbl1134.81020MR2346392DOI10.1007/s00220-007-0337-9
- Oh, Y.-G., 10.1016/0022-0396(89)90123-X, J. Differ. Equations 81 (1989), 255-274. (1989) Zbl0703.35158MR1016082DOI10.1016/0022-0396(89)90123-X
- Scandone, R., 10.1007/978-3-031-24311-0_6, Harmonic Analysis and Partial Differential Equations Trends in Mathematics. Birkhäuser, Cham (2022), 91-96. (2022) MR4696593DOI10.1007/978-3-031-24311-0_6
- Shi, Q., 10.57262/die036-0910-837, Differ. Integral Equ. 36 (2023), 837-858. (2023) Zbl07729567MR4597865DOI10.57262/die036-0910-837
- Shi, Q., Jia, Y., Cao, J., 10.1016/j.aml.2022.108038, Appl. Math. Lett. 131 (2022), Article ID 108038, 7 pages. (2022) Zbl1487.35193MR4395960DOI10.1016/j.aml.2022.108038
- Shi, Q., Peng, C., Wang, Q., 10.3934/dcdsb.2021304, Discrete Contin. Dyn. Syst., Ser. B 27 (2022), 6009-6022. (2022) Zbl1496.35368MR4470533DOI10.3934/dcdsb.2021304
- Shukla, P. K., Eliasson, B., 10.3367/UFNe.0180.201001b.0055, Phys. Usp. 53 (2010), 51-76. (2010) DOI10.3367/UFNe.0180.201001b.0055
- Shukla, P. K., Eliasson, B., 10.1103/RevModPhys.83.885, Rev. Mod. Phys. 83 (2011), 885-906. (2011) DOI10.1103/RevModPhys.83.885
- M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, T. Yamamoto, Y. Nakata, 10.1088/0022-3727/38/13/008, J. Phys. D, Appl. Phys. 38 (2005), 2126-2134. (2005) DOI10.1088/0022-3727/38/13/008
- Tsutsumi, Y., 10.1007/BF02097027, Commun. Math. Phys. 151 (1993), 543-576. (1993) Zbl0766.35061MR1207265DOI10.1007/BF02097027
- Tsutsumi, Y., 10.14492/hokmj/1380892611, Hokkaido Math. J. 24 (1995), 617-639. (1995) Zbl0840.35091MR1357033DOI10.14492/hokmj/1380892611
- Tsutsumi, M., Nakamitsu, K., 10.1201/9781003072683, Physical Mathematics and Nonlinear Partial Differential Equations Lecture Notes in Pure and Applied Mathematics 102. Marcel Dekker, New York (1985), 139-155. (1985) Zbl0575.35061MR0826831DOI10.1201/9781003072683
- Wada, T., 10.1016/j.jfa.2012.04.010, J. Funct. Anal. 263 (2012), 1-24. (2012) Zbl1251.35095MR2920838DOI10.1016/j.jfa.2012.04.010
- Yajima, K., 10.1007/BF01212420, Commun. Math. Phys. 110 (1987), 415-426. (1987) Zbl0638.35036MR0891945DOI10.1007/BF01212420
- Yajima, K., 10.1007/BF02820459, J. Anal. Math. 56 (1991), 29-76. (1991) Zbl0739.35083MR1243098DOI10.1007/BF02820459
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.