A modified Fletcher-Reeves conjugate gradient method for unconstrained optimization with applications in image restoration

Zainab Hassan Ahmed; Mohamed Hbaib; Khalil K. Abbo

Applications of Mathematics (2024)

  • Volume: 69, Issue: 4, page 481-499
  • ISSN: 0862-7940

Abstract

top
The Fletcher-Reeves (FR) method is widely recognized for its drawbacks, such as generating unfavorable directions and taking small steps, which can lead to subsequent poor directions and steps. To address this issue, we propose a modification to the FR method, and then we develop it into the three-term conjugate gradient method in this paper. The suggested methods, named ``HZF'' and ``THZF'', preserve the descent property of the FR method while mitigating the drawbacks. The algorithms incorporate strong Wolfe line search conditions to ensure effective convergence. Through numerical comparisons with other conjugate gradient algorithms, our modified approach demonstrates superior performance. The results highlight the improved efficacy of the HZF algorithm compared to the FR and three-term FR conjugate gradient methods. The new algorithm was applied to the problem of image restoration and proved to be highly effective in image restoration compared to other algorithms.

How to cite

top

Ahmed, Zainab Hassan, Hbaib, Mohamed, and Abbo, Khalil K.. "A modified Fletcher-Reeves conjugate gradient method for unconstrained optimization with applications in image restoration." Applications of Mathematics 69.4 (2024): 481-499. <http://eudml.org/doc/299595>.

@article{Ahmed2024,
abstract = {The Fletcher-Reeves (FR) method is widely recognized for its drawbacks, such as generating unfavorable directions and taking small steps, which can lead to subsequent poor directions and steps. To address this issue, we propose a modification to the FR method, and then we develop it into the three-term conjugate gradient method in this paper. The suggested methods, named ``HZF'' and ``THZF'', preserve the descent property of the FR method while mitigating the drawbacks. The algorithms incorporate strong Wolfe line search conditions to ensure effective convergence. Through numerical comparisons with other conjugate gradient algorithms, our modified approach demonstrates superior performance. The results highlight the improved efficacy of the HZF algorithm compared to the FR and three-term FR conjugate gradient methods. The new algorithm was applied to the problem of image restoration and proved to be highly effective in image restoration compared to other algorithms.},
author = {Ahmed, Zainab Hassan, Hbaib, Mohamed, Abbo, Khalil K.},
journal = {Applications of Mathematics},
keywords = {unconstrained optimization; decreasing feature; global convergence; image restoration; conjugate gradient technique},
language = {eng},
number = {4},
pages = {481-499},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A modified Fletcher-Reeves conjugate gradient method for unconstrained optimization with applications in image restoration},
url = {http://eudml.org/doc/299595},
volume = {69},
year = {2024},
}

TY - JOUR
AU - Ahmed, Zainab Hassan
AU - Hbaib, Mohamed
AU - Abbo, Khalil K.
TI - A modified Fletcher-Reeves conjugate gradient method for unconstrained optimization with applications in image restoration
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 4
SP - 481
EP - 499
AB - The Fletcher-Reeves (FR) method is widely recognized for its drawbacks, such as generating unfavorable directions and taking small steps, which can lead to subsequent poor directions and steps. To address this issue, we propose a modification to the FR method, and then we develop it into the three-term conjugate gradient method in this paper. The suggested methods, named ``HZF'' and ``THZF'', preserve the descent property of the FR method while mitigating the drawbacks. The algorithms incorporate strong Wolfe line search conditions to ensure effective convergence. Through numerical comparisons with other conjugate gradient algorithms, our modified approach demonstrates superior performance. The results highlight the improved efficacy of the HZF algorithm compared to the FR and three-term FR conjugate gradient methods. The new algorithm was applied to the problem of image restoration and proved to be highly effective in image restoration compared to other algorithms.
LA - eng
KW - unconstrained optimization; decreasing feature; global convergence; image restoration; conjugate gradient technique
UR - http://eudml.org/doc/299595
ER -

References

top
  1. Abdullah, Z. M., Khudhur, H. M., Ahmed, A. Khairulla, 10.11591/ijeecs.v27.i3.pp1525-1532, Indones. J. Electr. Eng. Comput. Sci. 27 (2022), 1525-1532. (2022) DOI10.11591/ijeecs.v27.i3.pp1525-1532
  2. Abed, M. M., Öztürk, U., Khudhur, H., 10.52866/ijcsm.2022.01.01.001, Iraqi J. Comput. Sci. Math. 3 (2022), 1-10. (2022) DOI10.52866/ijcsm.2022.01.01.001
  3. Ahmed, A. S., Khudhur, H. M., Najmuldeen, M. S., 10.11591/ijeecs.v23.i1.pp338-344, Indones. J. Electr. Eng. Comput. Sci. 23 (2021), 338-344. (2021) DOI10.11591/ijeecs.v23.i1.pp338-344
  4. Aji, S., Kumam, P., Siricharoen, P., Abubakar, A. B., Yahaya, M. M., 10.1109/ACCESS.2020.3020334, IEEE Access 8 (2020), 158656-158665. (2020) DOI10.1109/ACCESS.2020.3020334
  5. Al-Baali, M., 10.1093/imanum/5.1.121, IMA J. Numer. Anal. 5 (1985), 121-124. (1985) Zbl0578.65063MR0777963DOI10.1093/imanum/5.1.121
  6. Andrei, N., Conjugate gradient algorithms for molecular formation under pairwise potential minimization, Proceedings of the Fifth Workshop on Mathematical Modelling of Environmental and Life Sciences Problems Editura Academiei Române, Bucureşti (2006), 7-26. (2006) 
  7. Andrei, N., Nonlinear Conjugate Gradient Methods for Unconstrained Optimization, Springer Optimization and Its Applications 158. Springer, Cham (2020),9999DOI99999 10.1007/978-3-030-42950-8 . (2020) Zbl1514.90250MR4179461
  8. Cai, J.-F., Chan, R. H., Morini, B., 10.1007/978-3-540-33267-1_7, Image Processing Based on Partial Differential Equations Springer, Berlin (2007), 109-122. (2007) MR2424224DOI10.1007/978-3-540-33267-1_7
  9. Dai, Y.-H., Liao, L.-Z., 10.1007/s002450010019, Appl. Math. Optim. 43 (2001), 87-101. (2001) Zbl0973.65050MR1804396DOI10.1007/s002450010019
  10. Dai, Y. H., Yuan, Y., 10.1137/S1052623497318992, SIAM J. Optim. 10 (1999), 177-182. (1999) Zbl0957.65061MR1740963DOI10.1137/S1052623497318992
  11. Dolan, E. D., Moré, J. J., 10.1007/s101070100263, Math. Program. 91 (2002), 201-213. (2002) Zbl1049.90004MR1875515DOI10.1007/s101070100263
  12. Fletcher, R., Reeves, C. M., 10.1093/comjnl/7.2.149, Comput. J. 7 (1964), 149-154. (1964) Zbl0132.11701MR0187375DOI10.1093/comjnl/7.2.149
  13. Garreau, G. A., 10.2307/3617168, Math. Gaz. 65 (1981), 234-235. (1981) MR0565858DOI10.2307/3617168
  14. Gilbert, J. C., Nocedal, J., 10.1137/0802003, SIAM J. Optim. 2 (1992), 21-42. (1992) Zbl0767.90082MR1147881DOI10.1137/0802003
  15. Hager, W. W., Zhang, H., 10.1137/03060188, SIAM J. Optim. 16 (2005), 170-192. (2005) Zbl1093.90085MR2177774DOI10.1137/03060188
  16. Hager, W. W., Zhang, H., A survey of nonlinear conjugate gradient methods, Pac. J. Optim. 2 (2006), 35-58. (2006) Zbl1117.90048MR2548208
  17. Halil, I. H., Abbo, K. K., Ebrahim, H. H., 10.1109/ICCITM53167.2021.9677756, 7th International Conference on Contemporary Information Technology and Mathematics (ICCITM) IEEE, Philadelphia (2021), 274-278. (2021) DOI10.1109/ICCITM53167.2021.9677756
  18. Hestenes, M. R., Stiefel, E., 10.6028/jres.049.044, J. Res. Natl. Bur. Stand. 49 (1952), 409-436. (1952) Zbl0048.09901MR0060307DOI10.6028/jres.049.044
  19. Ibrahim, Y. I., Khudhur, H. M., 10.11591/ijeecs.v28.i3.pp1510-1517, Indones. J. Electr. Eng. Comput. Sci. 28 (2022), 1510-1517. (2022) DOI10.11591/ijeecs.v28.i3.pp1510-1517
  20. Khudhur, H. M., Abbo, K. K., 10.1088/1742-6596/1879/2/022111, J. Phys., Conf. Ser. 1879 (2021), Article ID 022111, 9 pages. (2021) DOI10.1088/1742-6596/1879/2/022111
  21. Khudhur, H. M., Fawze, A. A. M., 10.1504/IJMMNO.2023.132286, Int. J. Math. Model. Numer. Optim. 13 (2023), 313-325. (2023) DOI10.1504/IJMMNO.2023.132286
  22. Khudhur, H. M., Hassan, B. A., Aji, S., 10.1007/s40819-023-01637-w, Int. J. Appl. Comput. Math. 10 (2024), Article ID 4, 12 pages. (2024) MR4675158DOI10.1007/s40819-023-01637-w
  23. Lai, K. K., Mishra, S. K., Panda, G., Ansary, M. A. T., Ram, B., 10.3934/math.2020354, AIMS Math. 5 (2020), 5521-5540. (2020) Zbl1484.90101MR4148898DOI10.3934/math.2020354
  24. Lai, K. K., Mishra, S. K., Ram, B., A q -conjugate gradient algorithm for unconstrained optimization problems, Pac. J. Optim. 17 (2021), 57-76. (2021) Zbl1462.90127MR4228060
  25. Lai, K. K., Mishra, S. K., Sharma, R., Sharma, M., Ram, B., 10.3390/math11061420, Mathematics 11 (2023), Article ID 1420, 24 pages. (2023) DOI10.3390/math11061420
  26. Laylani, Y., Hassan, B. A., Khudhur, H. M., 10.29020/nybg.ejpam.v15i4.4575, Eur. J. Pure Appl. Math. 15 (2022), 1908-1916. (2022) DOI10.29020/nybg.ejpam.v15i4.4575
  27. Laylani, Y. A., Hassan, B. A., Khudhur, H. M., Enhanced spectral conjugate gradient methods for unconstrained optimization, Int. J. Math. Comput. Sci. 18 (2023), 163-172. (2023) Zbl1524.90293MR4539256
  28. Liu, Y., Storey, C., 10.1007/BF00940464, J. Optim. Theory Appl. 69 (1991), 129-137. (1991) Zbl0702.90077MR1104590DOI10.1007/BF00940464
  29. Mishra, S. K., Panda, G., Ansary, M. A. T., Ram, B., 10.1007/s12190-020-01322-x, J. Appl. Math. Comput. 63 (2020), 391-410. (2020) Zbl1475.90095MR4100985DOI10.1007/s12190-020-01322-x
  30. Mishra, S. K., Panda, G., Chakraborty, S. K., Samei, M. E., Ram, B., 10.1186/s13662-020-03100-2, Adv. Difference Equ. 2020 (2020), Article ID 638, 23 pages. (2020) Zbl1487.65067MR4175483DOI10.1186/s13662-020-03100-2
  31. Mzili, T., Mzili, I., Riffi, M. E., Kurdi, M., Ali, A. H., Pamucar, D., Abualigah, L., 10.1016/j.imu.2024.101467, Inf. Medicine Unlocked 46 (2024), Article ID 101467, 13 pages. (2024) DOI10.1016/j.imu.2024.101467
  32. Mzili, T., Mzili, I., Riffi, M. E., Pamucar, D., Kurdi, M., Ali, A. H., 10.31181/rme040116072023m, Rep. Mech. Engin. 4 (2023), 90-103. (2023) DOI10.31181/rme040116072023m
  33. Nocedal, J., Wright, S. J., 10.1007/978-0-387-40065-5, Springer Series in Operations Research and Financial Engineering. Springer, New York (2006). (2006) Zbl1104.65059MR2244940DOI10.1007/978-0-387-40065-5
  34. Polak, E., Ribière, G., 10.1051/m2an/196903r100351, Rev. Franç. Inform. Rech. Opér. 3 (1969), 35-43 French. (1969) Zbl0174.48001MR0255025DOI10.1051/m2an/196903r100351
  35. Powell, M. J. D., 10.1007/BFb0099521, Numerical Analysis Lecture Notes in Mathematics 1066. Springer, Berlin (1984), 122-141. (1984) Zbl0531.65035MR0760460DOI10.1007/BFb0099521
  36. Rasheed, M., Ali, A. H., Alabdali, O., Shihab, S., Rashid, A., Rashid, T., Hamad, S. H. A., 10.1088/1742-6596/1999/1/012080, J. Phys., Conf. Ser. 1999 (2021), Article ID 012080, 14 pages. (2021) DOI10.1088/1742-6596/1999/1/012080
  37. Samei, M. E., Ahmadi, A., Hajiseyedazizi, S. N., Mishra, S. K., Ram, B., 10.1186/s13660-021-02612-z, J. Inequal. Appl. 2021 (2021), Article ID 75, 33 pages. (2021) Zbl1504.34013MR4248658DOI10.1186/s13660-021-02612-z
  38. Souli, C., Ziadi, R., Bencherif-Madani, A., Khudhur, H. M., 10.22124/JMM.2024.26151.2317, J. Math. Model. 12 (2024), 301-317. (2024) MR4777343DOI10.22124/JMM.2024.26151.2317
  39. Sun, W., Yuan, Y.-X., 10.1007/b106451, Springer Optimization and Its Applications 1. Springer, New York (2006). (2006) Zbl1129.90002MR2232297DOI10.1007/b106451
  40. Toumi, T., Raymond, P., Upwind numerical scheme for a two-fluid two-phase flow model, 14th International Conference on Numerical Methods in Fluid Dynamics Lecture Notes in Physics 453. Springer, Berlin (1995), 299-306. (1995) Zbl0862.76053
  41. Witzgall, C., 10.2307/2008742, Math. Comput. 53 (1989), 768-769. (1989) MR0955799DOI10.2307/2008742
  42. Zhang, L., Zhou, W., Li, D., 10.1080/10556780701223293, Optim. Methods Softw. 22 (2007), 697-711. (2007) Zbl1220.90094MR2321616DOI10.1080/10556780701223293
  43. Zoutendijk, G., Nonlinear programming, computational methods, Integer and Nonlinear Programming North-Holland, Amsterdam (1970), 37-86. (1970) Zbl0336.90057MR0437081

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.