A modified Fletcher-Reeves conjugate gradient method for unconstrained optimization with applications in image restoration
Zainab Hassan Ahmed; Mohamed Hbaib; Khalil K. Abbo
Applications of Mathematics (2024)
- Volume: 69, Issue: 4, page 481-499
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topAhmed, Zainab Hassan, Hbaib, Mohamed, and Abbo, Khalil K.. "A modified Fletcher-Reeves conjugate gradient method for unconstrained optimization with applications in image restoration." Applications of Mathematics 69.4 (2024): 481-499. <http://eudml.org/doc/299595>.
@article{Ahmed2024,
abstract = {The Fletcher-Reeves (FR) method is widely recognized for its drawbacks, such as generating unfavorable directions and taking small steps, which can lead to subsequent poor directions and steps. To address this issue, we propose a modification to the FR method, and then we develop it into the three-term conjugate gradient method in this paper. The suggested methods, named ``HZF'' and ``THZF'', preserve the descent property of the FR method while mitigating the drawbacks. The algorithms incorporate strong Wolfe line search conditions to ensure effective convergence. Through numerical comparisons with other conjugate gradient algorithms, our modified approach demonstrates superior performance. The results highlight the improved efficacy of the HZF algorithm compared to the FR and three-term FR conjugate gradient methods. The new algorithm was applied to the problem of image restoration and proved to be highly effective in image restoration compared to other algorithms.},
author = {Ahmed, Zainab Hassan, Hbaib, Mohamed, Abbo, Khalil K.},
journal = {Applications of Mathematics},
keywords = {unconstrained optimization; decreasing feature; global convergence; image restoration; conjugate gradient technique},
language = {eng},
number = {4},
pages = {481-499},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A modified Fletcher-Reeves conjugate gradient method for unconstrained optimization with applications in image restoration},
url = {http://eudml.org/doc/299595},
volume = {69},
year = {2024},
}
TY - JOUR
AU - Ahmed, Zainab Hassan
AU - Hbaib, Mohamed
AU - Abbo, Khalil K.
TI - A modified Fletcher-Reeves conjugate gradient method for unconstrained optimization with applications in image restoration
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 4
SP - 481
EP - 499
AB - The Fletcher-Reeves (FR) method is widely recognized for its drawbacks, such as generating unfavorable directions and taking small steps, which can lead to subsequent poor directions and steps. To address this issue, we propose a modification to the FR method, and then we develop it into the three-term conjugate gradient method in this paper. The suggested methods, named ``HZF'' and ``THZF'', preserve the descent property of the FR method while mitigating the drawbacks. The algorithms incorporate strong Wolfe line search conditions to ensure effective convergence. Through numerical comparisons with other conjugate gradient algorithms, our modified approach demonstrates superior performance. The results highlight the improved efficacy of the HZF algorithm compared to the FR and three-term FR conjugate gradient methods. The new algorithm was applied to the problem of image restoration and proved to be highly effective in image restoration compared to other algorithms.
LA - eng
KW - unconstrained optimization; decreasing feature; global convergence; image restoration; conjugate gradient technique
UR - http://eudml.org/doc/299595
ER -
References
top- Abdullah, Z. M., Khudhur, H. M., Ahmed, A. Khairulla, 10.11591/ijeecs.v27.i3.pp1525-1532, Indones. J. Electr. Eng. Comput. Sci. 27 (2022), 1525-1532. (2022) DOI10.11591/ijeecs.v27.i3.pp1525-1532
- Abed, M. M., Öztürk, U., Khudhur, H., 10.52866/ijcsm.2022.01.01.001, Iraqi J. Comput. Sci. Math. 3 (2022), 1-10. (2022) DOI10.52866/ijcsm.2022.01.01.001
- Ahmed, A. S., Khudhur, H. M., Najmuldeen, M. S., 10.11591/ijeecs.v23.i1.pp338-344, Indones. J. Electr. Eng. Comput. Sci. 23 (2021), 338-344. (2021) DOI10.11591/ijeecs.v23.i1.pp338-344
- Aji, S., Kumam, P., Siricharoen, P., Abubakar, A. B., Yahaya, M. M., 10.1109/ACCESS.2020.3020334, IEEE Access 8 (2020), 158656-158665. (2020) DOI10.1109/ACCESS.2020.3020334
- Al-Baali, M., 10.1093/imanum/5.1.121, IMA J. Numer. Anal. 5 (1985), 121-124. (1985) Zbl0578.65063MR0777963DOI10.1093/imanum/5.1.121
- Andrei, N., Conjugate gradient algorithms for molecular formation under pairwise potential minimization, Proceedings of the Fifth Workshop on Mathematical Modelling of Environmental and Life Sciences Problems Editura Academiei Române, Bucureşti (2006), 7-26. (2006)
- Andrei, N., Nonlinear Conjugate Gradient Methods for Unconstrained Optimization, Springer Optimization and Its Applications 158. Springer, Cham (2020),9999DOI99999 10.1007/978-3-030-42950-8 . (2020) Zbl1514.90250MR4179461
- Cai, J.-F., Chan, R. H., Morini, B., 10.1007/978-3-540-33267-1_7, Image Processing Based on Partial Differential Equations Springer, Berlin (2007), 109-122. (2007) MR2424224DOI10.1007/978-3-540-33267-1_7
- Dai, Y.-H., Liao, L.-Z., 10.1007/s002450010019, Appl. Math. Optim. 43 (2001), 87-101. (2001) Zbl0973.65050MR1804396DOI10.1007/s002450010019
- Dai, Y. H., Yuan, Y., 10.1137/S1052623497318992, SIAM J. Optim. 10 (1999), 177-182. (1999) Zbl0957.65061MR1740963DOI10.1137/S1052623497318992
- Dolan, E. D., Moré, J. J., 10.1007/s101070100263, Math. Program. 91 (2002), 201-213. (2002) Zbl1049.90004MR1875515DOI10.1007/s101070100263
- Fletcher, R., Reeves, C. M., 10.1093/comjnl/7.2.149, Comput. J. 7 (1964), 149-154. (1964) Zbl0132.11701MR0187375DOI10.1093/comjnl/7.2.149
- Garreau, G. A., 10.2307/3617168, Math. Gaz. 65 (1981), 234-235. (1981) MR0565858DOI10.2307/3617168
- Gilbert, J. C., Nocedal, J., 10.1137/0802003, SIAM J. Optim. 2 (1992), 21-42. (1992) Zbl0767.90082MR1147881DOI10.1137/0802003
- Hager, W. W., Zhang, H., 10.1137/03060188, SIAM J. Optim. 16 (2005), 170-192. (2005) Zbl1093.90085MR2177774DOI10.1137/03060188
- Hager, W. W., Zhang, H., A survey of nonlinear conjugate gradient methods, Pac. J. Optim. 2 (2006), 35-58. (2006) Zbl1117.90048MR2548208
- Halil, I. H., Abbo, K. K., Ebrahim, H. H., 10.1109/ICCITM53167.2021.9677756, 7th International Conference on Contemporary Information Technology and Mathematics (ICCITM) IEEE, Philadelphia (2021), 274-278. (2021) DOI10.1109/ICCITM53167.2021.9677756
- Hestenes, M. R., Stiefel, E., 10.6028/jres.049.044, J. Res. Natl. Bur. Stand. 49 (1952), 409-436. (1952) Zbl0048.09901MR0060307DOI10.6028/jres.049.044
- Ibrahim, Y. I., Khudhur, H. M., 10.11591/ijeecs.v28.i3.pp1510-1517, Indones. J. Electr. Eng. Comput. Sci. 28 (2022), 1510-1517. (2022) DOI10.11591/ijeecs.v28.i3.pp1510-1517
- Khudhur, H. M., Abbo, K. K., 10.1088/1742-6596/1879/2/022111, J. Phys., Conf. Ser. 1879 (2021), Article ID 022111, 9 pages. (2021) DOI10.1088/1742-6596/1879/2/022111
- Khudhur, H. M., Fawze, A. A. M., 10.1504/IJMMNO.2023.132286, Int. J. Math. Model. Numer. Optim. 13 (2023), 313-325. (2023) DOI10.1504/IJMMNO.2023.132286
- Khudhur, H. M., Hassan, B. A., Aji, S., 10.1007/s40819-023-01637-w, Int. J. Appl. Comput. Math. 10 (2024), Article ID 4, 12 pages. (2024) MR4675158DOI10.1007/s40819-023-01637-w
- Lai, K. K., Mishra, S. K., Panda, G., Ansary, M. A. T., Ram, B., 10.3934/math.2020354, AIMS Math. 5 (2020), 5521-5540. (2020) Zbl1484.90101MR4148898DOI10.3934/math.2020354
- Lai, K. K., Mishra, S. K., Ram, B., A -conjugate gradient algorithm for unconstrained optimization problems, Pac. J. Optim. 17 (2021), 57-76. (2021) Zbl1462.90127MR4228060
- Lai, K. K., Mishra, S. K., Sharma, R., Sharma, M., Ram, B., 10.3390/math11061420, Mathematics 11 (2023), Article ID 1420, 24 pages. (2023) DOI10.3390/math11061420
- Laylani, Y., Hassan, B. A., Khudhur, H. M., 10.29020/nybg.ejpam.v15i4.4575, Eur. J. Pure Appl. Math. 15 (2022), 1908-1916. (2022) DOI10.29020/nybg.ejpam.v15i4.4575
- Laylani, Y. A., Hassan, B. A., Khudhur, H. M., Enhanced spectral conjugate gradient methods for unconstrained optimization, Int. J. Math. Comput. Sci. 18 (2023), 163-172. (2023) Zbl1524.90293MR4539256
- Liu, Y., Storey, C., 10.1007/BF00940464, J. Optim. Theory Appl. 69 (1991), 129-137. (1991) Zbl0702.90077MR1104590DOI10.1007/BF00940464
- Mishra, S. K., Panda, G., Ansary, M. A. T., Ram, B., 10.1007/s12190-020-01322-x, J. Appl. Math. Comput. 63 (2020), 391-410. (2020) Zbl1475.90095MR4100985DOI10.1007/s12190-020-01322-x
- Mishra, S. K., Panda, G., Chakraborty, S. K., Samei, M. E., Ram, B., 10.1186/s13662-020-03100-2, Adv. Difference Equ. 2020 (2020), Article ID 638, 23 pages. (2020) Zbl1487.65067MR4175483DOI10.1186/s13662-020-03100-2
- Mzili, T., Mzili, I., Riffi, M. E., Kurdi, M., Ali, A. H., Pamucar, D., Abualigah, L., 10.1016/j.imu.2024.101467, Inf. Medicine Unlocked 46 (2024), Article ID 101467, 13 pages. (2024) DOI10.1016/j.imu.2024.101467
- Mzili, T., Mzili, I., Riffi, M. E., Pamucar, D., Kurdi, M., Ali, A. H., 10.31181/rme040116072023m, Rep. Mech. Engin. 4 (2023), 90-103. (2023) DOI10.31181/rme040116072023m
- Nocedal, J., Wright, S. J., 10.1007/978-0-387-40065-5, Springer Series in Operations Research and Financial Engineering. Springer, New York (2006). (2006) Zbl1104.65059MR2244940DOI10.1007/978-0-387-40065-5
- Polak, E., Ribière, G., 10.1051/m2an/196903r100351, Rev. Franç. Inform. Rech. Opér. 3 (1969), 35-43 French. (1969) Zbl0174.48001MR0255025DOI10.1051/m2an/196903r100351
- Powell, M. J. D., 10.1007/BFb0099521, Numerical Analysis Lecture Notes in Mathematics 1066. Springer, Berlin (1984), 122-141. (1984) Zbl0531.65035MR0760460DOI10.1007/BFb0099521
- Rasheed, M., Ali, A. H., Alabdali, O., Shihab, S., Rashid, A., Rashid, T., Hamad, S. H. A., 10.1088/1742-6596/1999/1/012080, J. Phys., Conf. Ser. 1999 (2021), Article ID 012080, 14 pages. (2021) DOI10.1088/1742-6596/1999/1/012080
- Samei, M. E., Ahmadi, A., Hajiseyedazizi, S. N., Mishra, S. K., Ram, B., 10.1186/s13660-021-02612-z, J. Inequal. Appl. 2021 (2021), Article ID 75, 33 pages. (2021) Zbl1504.34013MR4248658DOI10.1186/s13660-021-02612-z
- Souli, C., Ziadi, R., Bencherif-Madani, A., Khudhur, H. M., 10.22124/JMM.2024.26151.2317, J. Math. Model. 12 (2024), 301-317. (2024) MR4777343DOI10.22124/JMM.2024.26151.2317
- Sun, W., Yuan, Y.-X., 10.1007/b106451, Springer Optimization and Its Applications 1. Springer, New York (2006). (2006) Zbl1129.90002MR2232297DOI10.1007/b106451
- Toumi, T., Raymond, P., Upwind numerical scheme for a two-fluid two-phase flow model, 14th International Conference on Numerical Methods in Fluid Dynamics Lecture Notes in Physics 453. Springer, Berlin (1995), 299-306. (1995) Zbl0862.76053
- Witzgall, C., 10.2307/2008742, Math. Comput. 53 (1989), 768-769. (1989) MR0955799DOI10.2307/2008742
- Zhang, L., Zhou, W., Li, D., 10.1080/10556780701223293, Optim. Methods Softw. 22 (2007), 697-711. (2007) Zbl1220.90094MR2321616DOI10.1080/10556780701223293
- Zoutendijk, G., Nonlinear programming, computational methods, Integer and Nonlinear Programming North-Holland, Amsterdam (1970), 37-86. (1970) Zbl0336.90057MR0437081
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.