Note sur la convergence de méthodes de directions conjuguées
- Volume: 3, Issue: R1, page 35-43
- ISSN: 0764-583X
Access Full Article
topHow to cite
topReferences
top- [1] R. FLETCHER et C. M. REEVES, « Function minimization by conjugate gradients», The Computer Journal, pp. 149-154 (1964). Zbl0132.11701MR187375
- [2] E. POLAK, « On Primal and Dual Methods for solving discrete optimal control Problems», Second Int. Conf. on Computing methods in optimization problems, San Remo, Italy, Sept. 1968. Zbl0208.17403MR280243
- [3] R. FLETCHER et M. J. D. POWELL, « rapidly convergent descent method for minimization», The Computer Journal, vol. 6, p. 163 (1963). Zbl0132.11603MR152116
- [4] D. M. TOPKIS et A. F. VEINOTT (Jr), « On the convergence of some feasible direction algorithms for non-linear programming», Siam. J. on Control, vol. 5, n° 2, p. 268 (1967). Zbl0158.18805MR213161
- [5] J. W. DANIEL, « The conjugate gradient method for linear and non linear operator equations», Siam J. Num. Anal, vol.4, n° 1(1967). Zbl0154.40302MR217987
- [6] M. R. HESTENES et E. STIEFEL, « Methods of conjugate gradients for solving linear systems», J. Res. N. B. S., vol. 49, p. (1952). Zbl0048.09901MR60307
- [7] T. GINSBURG, « The conjugate gradient method», Numerische Mathematik Band 5, Heft 2, p. 191 (1963). Zbl0123.11201MR154398
Citations in EuDML Documents
top- Jonas Koko, A conjugate gradient method with quasi-Newton approximation
- Ladislav Lukšan, Variable metric method with limited storage for large-scale unconstrained minimization
- Morteza Kimiaei, Majid Rostami, Impulse noise removal based on new hybrid conjugate gradient approach
- Zainab Hassan Ahmed, Mohamed Hbaib, Khalil K. Abbo, A modified Fletcher-Reeves conjugate gradient method for unconstrained optimization with applications in image restoration
- Youcef Elhamam Hemici, Samia Khelladi, Djamel Benterki, New hybrid conjugate gradient method for nonlinear optimization with application to image restoration problems
- J. C. Ligeron, R. Goarin, Modélisation multidimensionnelle des taux de défaillance de composants électroniques
- Fridrich Sloboda, An imperfect conjugate gradient algorithm
- Ladislav Lukšan, Computational experience with improved conjugate gradient methods for unconstrained minimization