Free locally convex spaces and L -retracts

Rodrigo Hidalgo Linares; Oleg Okunev

Commentationes Mathematicae Universitatis Carolinae (2023)

  • Volume: 64, Issue: 1, page 19-37
  • ISSN: 0010-2628

Abstract

top
We study the relation of L -equivalence defined between Tychonoff spaces, that is, we study the topological isomorphisms of their respective free locally convex spaces. We introduce the concept of an L -retract in a Tychonoff space in terms of the existence of a special kind of simultaneous extensions of continuous functions, explore the relation of this concept with the Dugundji extension theorem, and find some conditions that allow us to identify L -retracts in various classes of topological spaces. As applications, we present a method for constructing examples of L -equivalent mappings and L -equivalent spaces and in particular, we show that the properties of being an open mapping or a perfect mapping are not L -invariant.

How to cite

top

Hidalgo Linares, Rodrigo, and Okunev, Oleg. "Free locally convex spaces and $L$-retracts." Commentationes Mathematicae Universitatis Carolinae 64.1 (2023): 19-37. <http://eudml.org/doc/299598>.

@article{HidalgoLinares2023,
abstract = {We study the relation of $L$-equivalence defined between Tychonoff spaces, that is, we study the topological isomorphisms of their respective free locally convex spaces. We introduce the concept of an $L$-retract in a Tychonoff space in terms of the existence of a special kind of simultaneous extensions of continuous functions, explore the relation of this concept with the Dugundji extension theorem, and find some conditions that allow us to identify $L$-retracts in various classes of topological spaces. As applications, we present a method for constructing examples of $L$-equivalent mappings and $L$-equivalent spaces and in particular, we show that the properties of being an open mapping or a perfect mapping are not $L$-invariant.},
author = {Hidalgo Linares, Rodrigo, Okunev, Oleg},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {free locally convex space; $L$-equivalence; retraction},
language = {eng},
number = {1},
pages = {19-37},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Free locally convex spaces and $L$-retracts},
url = {http://eudml.org/doc/299598},
volume = {64},
year = {2023},
}

TY - JOUR
AU - Hidalgo Linares, Rodrigo
AU - Okunev, Oleg
TI - Free locally convex spaces and $L$-retracts
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 1
SP - 19
EP - 37
AB - We study the relation of $L$-equivalence defined between Tychonoff spaces, that is, we study the topological isomorphisms of their respective free locally convex spaces. We introduce the concept of an $L$-retract in a Tychonoff space in terms of the existence of a special kind of simultaneous extensions of continuous functions, explore the relation of this concept with the Dugundji extension theorem, and find some conditions that allow us to identify $L$-retracts in various classes of topological spaces. As applications, we present a method for constructing examples of $L$-equivalent mappings and $L$-equivalent spaces and in particular, we show that the properties of being an open mapping or a perfect mapping are not $L$-invariant.
LA - eng
KW - free locally convex space; $L$-equivalence; retraction
UR - http://eudml.org/doc/299598
ER -

References

top
  1. Arhangel'skii A. V., Linear homomorphisms of function spaces, Dokl. Akad. Nauk SSSR 264 (1982), no. 6, 1289–1292 (Russian). MR0664477
  2. Arhangel'skiĭ A. V., Topological Function Spaces, Math. Appl. (Soviet Ser.), 78, Kluwer Academic Publishers Group, Dordrecht, 1992. 
  3. Arhangel'skii A. V., 10.1007/978-3-662-07413-8_1, General Topology, III, Encyclopaedia Math. Sci., 51, Springer, Berlin, 1995. DOI10.1007/978-3-662-07413-8_1
  4. Cauty R., 10.4064/fm-146-1-85-99, Fund. Math. 146 (1994), no. 1, 85–99 (French. English summary). MR1305261DOI10.4064/fm-146-1-85-99
  5. Collins P. J., Roscoe A. W., 10.1090/S0002-9939-1984-0733418-9, Proc. Amer. Math. Soc. 90 (1984), no. 4, 631–640. MR0733418DOI10.1090/S0002-9939-1984-0733418-9
  6. Engelking R., General Topology, Sigma Ser. Pure Math., 6, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
  7. Flood J., Free Topological Vector Spaces, Dissertationes Math. (Rozprawy Mat.) 221 (1984), 95 pages. MR0741750
  8. Gabriyelyan S. S., Morris S. A., 10.1016/j.topol.2017.03.006, Topology Appl. 223 (2017), 30–49. MR3633732DOI10.1016/j.topol.2017.03.006
  9. Hoshina T., Yamazaki K., 10.1016/S0166-8641(01)00275-9, Topology Appl. 125 (2002), no. 2, 233–247. MR1933574DOI10.1016/S0166-8641(01)00275-9
  10. Karnik S. M., Willard S., 10.4153/CMB-1982-065-1, Canad. Math. Bull. 25 (1982), no. 4, 456–461. MR0674562DOI10.4153/CMB-1982-065-1
  11. Michael E., 10.2140/pjm.1953.3.789, Pacific J. Math. 3 (1953), 789–806. MR0059541DOI10.2140/pjm.1953.3.789
  12. Okunev O. G., 10.1016/0166-8641(90)90006-N, Seminar on General Topology and Topological Algebra, Moscow, 1988/1989, Topology Appl. 36 (1990), no. 2, 157–171. MR1068167DOI10.1016/0166-8641(90)90006-N
  13. Okunev O. G., M -equivalence of products, Trudy Moskov. Mat. Obshch. 56 (1995), 192–205, 351 (Russian); translation in Trans. Moscow Math. Soc. (1995), 149–158. MR1468468
  14. Schaefer H. H., Topological Vector Spaces, Graduate Texts in Mathematics, 3, Springer, New York, 1971. Zbl0983.46002MR0342978
  15. Sennott L. I., A necessary condition for a Dugundji extension property, Proc. of the 1984 Topology Conf., Auburn, Ala., 1984, Topology Proc. 2 (1977), no. 1, 265–280. MR0540611
  16. Uspenskiĭ V. V., On the topology of a free locally convex space, Dokl. Akad. Nauk SSSR 270 (1983), no. 6, 1334–1337 (Russian). MR0712944
  17. Yamazaki K., 10.21099/tkbjm/1496164899, Tsukuba J. Math. 29 (2005), no. 1, 197–213. MR2162836DOI10.21099/tkbjm/1496164899

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.