Free locally convex spaces and -retracts
Rodrigo Hidalgo Linares; Oleg Okunev
Commentationes Mathematicae Universitatis Carolinae (2023)
- Volume: 64, Issue: 1, page 19-37
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topHidalgo Linares, Rodrigo, and Okunev, Oleg. "Free locally convex spaces and $L$-retracts." Commentationes Mathematicae Universitatis Carolinae 64.1 (2023): 19-37. <http://eudml.org/doc/299598>.
@article{HidalgoLinares2023,
abstract = {We study the relation of $L$-equivalence defined between Tychonoff spaces, that is, we study the topological isomorphisms of their respective free locally convex spaces. We introduce the concept of an $L$-retract in a Tychonoff space in terms of the existence of a special kind of simultaneous extensions of continuous functions, explore the relation of this concept with the Dugundji extension theorem, and find some conditions that allow us to identify $L$-retracts in various classes of topological spaces. As applications, we present a method for constructing examples of $L$-equivalent mappings and $L$-equivalent spaces and in particular, we show that the properties of being an open mapping or a perfect mapping are not $L$-invariant.},
author = {Hidalgo Linares, Rodrigo, Okunev, Oleg},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {free locally convex space; $L$-equivalence; retraction},
language = {eng},
number = {1},
pages = {19-37},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Free locally convex spaces and $L$-retracts},
url = {http://eudml.org/doc/299598},
volume = {64},
year = {2023},
}
TY - JOUR
AU - Hidalgo Linares, Rodrigo
AU - Okunev, Oleg
TI - Free locally convex spaces and $L$-retracts
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 1
SP - 19
EP - 37
AB - We study the relation of $L$-equivalence defined between Tychonoff spaces, that is, we study the topological isomorphisms of their respective free locally convex spaces. We introduce the concept of an $L$-retract in a Tychonoff space in terms of the existence of a special kind of simultaneous extensions of continuous functions, explore the relation of this concept with the Dugundji extension theorem, and find some conditions that allow us to identify $L$-retracts in various classes of topological spaces. As applications, we present a method for constructing examples of $L$-equivalent mappings and $L$-equivalent spaces and in particular, we show that the properties of being an open mapping or a perfect mapping are not $L$-invariant.
LA - eng
KW - free locally convex space; $L$-equivalence; retraction
UR - http://eudml.org/doc/299598
ER -
References
top- Arhangel'skii A. V., Linear homomorphisms of function spaces, Dokl. Akad. Nauk SSSR 264 (1982), no. 6, 1289–1292 (Russian). MR0664477
- Arhangel'skiĭ A. V., Topological Function Spaces, Math. Appl. (Soviet Ser.), 78, Kluwer Academic Publishers Group, Dordrecht, 1992.
- Arhangel'skii A. V., 10.1007/978-3-662-07413-8_1, General Topology, III, Encyclopaedia Math. Sci., 51, Springer, Berlin, 1995. DOI10.1007/978-3-662-07413-8_1
- Cauty R., 10.4064/fm-146-1-85-99, Fund. Math. 146 (1994), no. 1, 85–99 (French. English summary). MR1305261DOI10.4064/fm-146-1-85-99
- Collins P. J., Roscoe A. W., 10.1090/S0002-9939-1984-0733418-9, Proc. Amer. Math. Soc. 90 (1984), no. 4, 631–640. MR0733418DOI10.1090/S0002-9939-1984-0733418-9
- Engelking R., General Topology, Sigma Ser. Pure Math., 6, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
- Flood J., Free Topological Vector Spaces, Dissertationes Math. (Rozprawy Mat.) 221 (1984), 95 pages. MR0741750
- Gabriyelyan S. S., Morris S. A., 10.1016/j.topol.2017.03.006, Topology Appl. 223 (2017), 30–49. MR3633732DOI10.1016/j.topol.2017.03.006
- Hoshina T., Yamazaki K., 10.1016/S0166-8641(01)00275-9, Topology Appl. 125 (2002), no. 2, 233–247. MR1933574DOI10.1016/S0166-8641(01)00275-9
- Karnik S. M., Willard S., 10.4153/CMB-1982-065-1, Canad. Math. Bull. 25 (1982), no. 4, 456–461. MR0674562DOI10.4153/CMB-1982-065-1
- Michael E., 10.2140/pjm.1953.3.789, Pacific J. Math. 3 (1953), 789–806. MR0059541DOI10.2140/pjm.1953.3.789
- Okunev O. G., 10.1016/0166-8641(90)90006-N, Seminar on General Topology and Topological Algebra, Moscow, 1988/1989, Topology Appl. 36 (1990), no. 2, 157–171. MR1068167DOI10.1016/0166-8641(90)90006-N
- Okunev O. G., -equivalence of products, Trudy Moskov. Mat. Obshch. 56 (1995), 192–205, 351 (Russian); translation in Trans. Moscow Math. Soc. (1995), 149–158. MR1468468
- Schaefer H. H., Topological Vector Spaces, Graduate Texts in Mathematics, 3, Springer, New York, 1971. Zbl0983.46002MR0342978
- Sennott L. I., A necessary condition for a Dugundji extension property, Proc. of the 1984 Topology Conf., Auburn, Ala., 1984, Topology Proc. 2 (1977), no. 1, 265–280. MR0540611
- Uspenskiĭ V. V., On the topology of a free locally convex space, Dokl. Akad. Nauk SSSR 270 (1983), no. 6, 1334–1337 (Russian). MR0712944
- Yamazaki K., 10.21099/tkbjm/1496164899, Tsukuba J. Math. 29 (2005), no. 1, 197–213. MR2162836DOI10.21099/tkbjm/1496164899
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.