Energy norm error estimates and convergence analysis for a stabilized Maxwell's equations in conductive media
Eric Lindström; Larisa Beilina
Applications of Mathematics (2024)
- Volume: 69, Issue: 4, page 415-436
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topLindström, Eric, and Beilina, Larisa. "Energy norm error estimates and convergence analysis for a stabilized Maxwell's equations in conductive media." Applications of Mathematics 69.4 (2024): 415-436. <http://eudml.org/doc/299599>.
@article{Lindström2024,
abstract = {The aim of this article is to investigate the well-posedness, stability of solutions to the time-dependent Maxwell's equations for electric field in conductive media in continuous and discrete settings, and study convergence analysis of the employed numerical scheme. The situation we consider would represent a physical problem where a subdomain is emerged in a homogeneous medium, characterized by constant dielectric permittivity and conductivity functions. It is well known that in these homogeneous regions the solution to the Maxwell's equations also solves the wave equation, which makes computations very efficient. In this way our problem can be considered as a coupling problem, for which we derive stability and convergence analysis. A number of numerical examples validate theoretical convergence rates of the proposed stabilized explicit finite element scheme.},
author = {Lindström, Eric, Beilina, Larisa},
journal = {Applications of Mathematics},
keywords = {Maxwell's equation; finite element method; stability; a priori error analysis; energy error estimate; convergence analysis},
language = {eng},
number = {4},
pages = {415-436},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Energy norm error estimates and convergence analysis for a stabilized Maxwell's equations in conductive media},
url = {http://eudml.org/doc/299599},
volume = {69},
year = {2024},
}
TY - JOUR
AU - Lindström, Eric
AU - Beilina, Larisa
TI - Energy norm error estimates and convergence analysis for a stabilized Maxwell's equations in conductive media
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 4
SP - 415
EP - 436
AB - The aim of this article is to investigate the well-posedness, stability of solutions to the time-dependent Maxwell's equations for electric field in conductive media in continuous and discrete settings, and study convergence analysis of the employed numerical scheme. The situation we consider would represent a physical problem where a subdomain is emerged in a homogeneous medium, characterized by constant dielectric permittivity and conductivity functions. It is well known that in these homogeneous regions the solution to the Maxwell's equations also solves the wave equation, which makes computations very efficient. In this way our problem can be considered as a coupling problem, for which we derive stability and convergence analysis. A number of numerical examples validate theoretical convergence rates of the proposed stabilized explicit finite element scheme.
LA - eng
KW - Maxwell's equation; finite element method; stability; a priori error analysis; energy error estimate; convergence analysis
UR - http://eudml.org/doc/299599
ER -
References
top- Arnold, D. N., Brezzi, F., Cockburn, B., Marini, L. D., 10.1137/S0036142901384162, SIAM J. Numer. Anal. 39 (2022), 1749-1779. (2022) Zbl1008.65080MR1885715DOI10.1137/S0036142901384162
- Asadzadeh, M., 10.1002/9781119671688, John Wiley & Sons, Hoboken (2021). (2021) Zbl1446.65001DOI10.1002/9781119671688
- Asadzadeh, M., Beilina, L., 10.3390/a15100337, Algorithms 15 (2022), Article ID 337, 22 pages. (2022) DOI10.3390/a15100337
- Asadzadeh, M., Beilina, L., 10.1016/j.matcom.2022.08.013, Math. Comput. Simul. 204 (2023), 556-574. (2023) Zbl07619073MR4484360DOI10.1016/j.matcom.2022.08.013
- Assous, F., Degond, P., Heinze, E., Raviart, P. A., Segre, J., 10.1006/jcph.1993.1214, J. Comput. Phys. 109 (1993), 222-237. (1993) Zbl0795.65087MR1253460DOI10.1006/jcph.1993.1214
- Balay, S., Gropp, W. D., McInnes, L. C., Smith, B. F., PETSc: The Portable, Extensible Toolkit for Scientific Computation, Available at http://www.mcs.anl.gov/petsc/.
- Baudouin, L., Buhan, M. de, Ervedoza, S., Osses, A., 10.1137/20M1315798, SIAM J. Numer. Anal. 59 (2021), 998-1039. (2021) Zbl1461.93213MR4244540DOI10.1137/20M1315798
- Beilina, L., 10.2478/s11533-013-0202-3, Cent. Eur. J. Math. 11 (2013), 702-733. (2013) Zbl1267.78044MR3015394DOI10.2478/s11533-013-0202-3
- Beilina, L., WavES: Wave Equations Solutions, Available at http://www.waves24.com/ (2017). (2017)
- Beilina, L., Klibanov, M. V., 10.1007/978-1-4419-7805-9, Springer, New York (2012). (2012) Zbl1255.65168DOI10.1007/978-1-4419-7805-9
- Beilina, L., Lindström, E., 10.3390/electronics11091359, Electronics 11 (2022), Article ID 1359, 33 pages. (2022) DOI10.3390/electronics11091359
- Beilina, L., Lindström, E., 10.1007/978-3-031-35871-5_7, Gas Dynamics with Applications in Industry and Life Sciences Springer Proceedings in Mathematics & Statistics 429. Springer, Cham (2023), 117-141. (2023) MR4696623DOI10.1007/978-3-031-35871-5_7
- Beilina, L., Ruas, V., 10.48550/arXiv.1808.10720, Available at https://arxiv.org/abs/1808.10720 (2018), 38 pages. (2018) DOI10.48550/arXiv.1808.10720
- Dhia, A.-S. Bonnet-Ben, Hazard, C., Lohrengel, S., 10.1137/S00361399973233, SIAM J. Appl. Math. 59 (1999), 2028-2044. (1999) Zbl0933.78007MR1709795DOI10.1137/S00361399973233
- Brenner, S. C., Scott, L. R., 10.1007/978-1-4757-4338-8, Texts in Applied Mathematics 15. Springer, New York (1994). (1994) Zbl0804.65101MR1278258DOI10.1007/978-1-4757-4338-8
- P. Ciarlet, Jr., 10.1016/j.cma.2004.05.021, Comput. Methods Appl. Mech. Eng. 194 (2005), 559-586. (2005) Zbl1063.78018MR2105182DOI10.1016/j.cma.2004.05.021
- P. Ciarlet, Jr., E. Jamelot, 10.1016/j.jcp.2007.05.029, J. Comput. Phys. 226 (2007), 1122-1135. (2007) Zbl1128.78002MR2356870DOI10.1016/j.jcp.2007.05.029
- Cohen, G. C., 10.1007/978-3-662-04823-8, Scientific Computation. Springer, Berlin (2002). (2002) Zbl0985.65096MR1870851DOI10.1007/978-3-662-04823-8
- Costabel, M., Dauge, M., 10.1007/s002050050197, Arch. Ration. Mech. Anal. 151 (2000), 221-276. (2000) Zbl0968.35113MR1753704DOI10.1007/s002050050197
- Costabel, M., Dauge, M., 10.1007/s002110100388, Numer. Math. 93 (2002), 239-277. (2002) Zbl1019.78009MR1941397DOI10.1007/s002110100388
- Elmkies, A., Joly, P., 10.1016/S0764-4442(99)80415-7, C. R. Acad. Sci., Paris, Sér. I 324 (1997), 1287-1293 French. (1997) Zbl0877.65081MR1456303DOI10.1016/S0764-4442(99)80415-7
- Eriksson, K., Estep, D., Hansbo, P., Johnson, C., Computational Differential Equations, Cambridge University Press, Cambridge (1996). (1996) Zbl0946.65049MR1414897
- Ern, A., Guermond, J.-L., 10.1016/j.camwa.2017.10.017, Comput. Math. Appl. 75 (2018), 918-932. (2018) Zbl1409.65068MR3766493DOI10.1016/j.camwa.2017.10.017
- Evans, L. C., 10.1090/gsm/019, Graduate Studies in Mathematics 19. AMS, Providence (1998). (1998) Zbl0902.35002MR1625845DOI10.1090/gsm/019
- Gleichmann, Y. G., Grote, M. J., 10.1088/1361-6420/ad01d4, Inverse Probl. 39 (2023), Article ID 125007, 27 pages. (2023) Zbl07765707MR4664072DOI10.1088/1361-6420/ad01d4
- Jamelot, E., Résolution des équations de Maxwell avec des éléments finis de Galerkin continus: PhD Thesis, L'Ecole Polytechnique, Paris (2005), French. (2005) Zbl1185.65006
- Jiang, B.-n., 10.1007/978-3-662-03740-9, Scientific Computation. Springer, Berlin (1998). (1998) Zbl0904.76003MR1639101DOI10.1007/978-3-662-03740-9
- Jiang, B.-n., Wu, J., Povinelli, L. A., 10.1006/jcph.1996.0082, J. Comput. Phys. 125 (1996), 104-123. (1996) Zbl0848.65086MR1381806DOI10.1006/jcph.1996.0082
- Jin, J.-M., The Finite Element Method in Electromagnetics, John Wiley, New York (1993). (1993) Zbl0823.65124MR1903357
- Johnson, C., Numerical Solutions of Partial Differential Equations by the Finite Element Method, Cambridge University Press, Cambridge (1987). (1987) Zbl0628.65098MR0925005
- Joly, P., 10.1007/978-3-642-55483-4_6, Topics in Computational Wave Propagation Lecture Notes in Computational Science and Engineering 31. Springer, Berlin (2003), 201-264. (2003) Zbl1049.78028MR2032871DOI10.1007/978-3-642-55483-4_6
- Křížek, M., Neittaanmäki, P., Finite Element Approximation of Variational Problems and Applications, Pitman Monographs and Surveys in Pure and Applied Mathematics 50. Longman, Harlow (1990). (1990) Zbl0708.65106MR1066462
- Křížek, M., Neittaanmäki, P., 10.1007/978-94-015-8672-6, Kluwer Academic, Dordrecht (1996). (1996) Zbl0859.65128MR1431889DOI10.1007/978-94-015-8672-6
- Lazebnik, M., al., et, 10.1088/0031-9155/52/20/002, Phys. Med. Biol. 52 (2007), Article ID 6093, 20 pages. (2007) DOI10.1088/0031-9155/52/20/002
- Malmberg, J. B., Beilina, L., 10.18576/amis/120101, Appl. Math. Inf. Sci. 12 (2018), 1-19. (2018) MR3747879DOI10.18576/amis/120101
- Monk, P., 10.1093/acprof:oso/9780198508885.001.0001, Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2003). (2003) Zbl1024.78009MR2059447DOI10.1093/acprof:oso/9780198508885.001.0001
- Monk, P. B., Parrott, A. K., 10.1137/0915055, SIAM J. Sci. Comput. 15 (1994), 916-937. (1994) Zbl0804.65122MR1278007DOI10.1137/0915055
- Munz, C.-D., Omnes, P., Schneider, R., Sonnendrücker, E., Voss, U., 10.1006/jcph.2000.6507, J. Comput. Phys. 161 (2000), 484-511. (2000) Zbl0970.78010MR1764247DOI10.1006/jcph.2000.6507
- Nedelec, J.-C., 10.1007/BF01396415, Numer. Math. 35 (1980), 315-341. (1980) Zbl0419.65069MR0592160DOI10.1007/BF01396415
- Paulsen, K. D., Lynch, D. R., 10.1109/22.75280, IEEE Trans. Microw. Theory Tech. 39 (1991), 395-404. (1991) DOI10.1109/22.75280
- Thành, N. T., Beilina, L., Klibanov, M. V., Fiddy, M. A., 10.1137/130924962, SIAM J. Sci. Comput. 36 (2014), B273--B293. (2014) Zbl1410.78018MR3199422DOI10.1137/130924962
- Thành, N. T., Beilina, L., Klibanov, M. V., Fiddy, M. A., 10.1137/140972469, SIAM J. Imaging Sci. 8 (2015), 757-786. (2015) Zbl1432.35259MR3327354DOI10.1137/140972469
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.