Solution of 3D contact shape optimization problems with Coulomb friction based on TFETI

Alexandros Markopoulos; Petr Beremlijski; Oldřich Vlach; Marie Sadowská

Applications of Mathematics (2023)

  • Volume: 68, Issue: 4, page 405-424
  • ISSN: 0862-7940

Abstract

top
The present paper deals with the numerical solution of 3D shape optimization problems in frictional contact mechanics. Mathematical modelling of the Coulomb friction problem leads to an implicit variational inequality which can be written as a fixed point problem. Furthermore, it is known that the discretized problem is uniquely solvable for small coefficients of friction. Since the considered problem is nonsmooth, we exploit the generalized Mordukhovich’s differential calculus to compute the needed subgradient information.The state problem is solved using successive approximations combined with the Total FETI (TFETI) method. The latter is based on tearing the bodies into “floating” subdomains, discretization by finite elements, and solving the resulting quadratic programming problem by augmented Lagrangians. The presented numerical experiments demonstrate our method’s power and the importance of the proper modelling of 3D frictional contact problems. The state problem solution and the sensitivity analysis process were implemented in parallel.

How to cite

top

Markopoulos, Alexandros, et al. "Solution of 3D contact shape optimization problems with Coulomb friction based on TFETI." Applications of Mathematics 68.4 (2023): 405-424. <http://eudml.org/doc/299601>.

@article{Markopoulos2023,
abstract = {The present paper deals with the numerical solution of 3D shape optimization problems in frictional contact mechanics. Mathematical modelling of the Coulomb friction problem leads to an implicit variational inequality which can be written as a fixed point problem. Furthermore, it is known that the discretized problem is uniquely solvable for small coefficients of friction. Since the considered problem is nonsmooth, we exploit the generalized Mordukhovich’s differential calculus to compute the needed subgradient information.The state problem is solved using successive approximations combined with the Total FETI (TFETI) method. The latter is based on tearing the bodies into “floating” subdomains, discretization by finite elements, and solving the resulting quadratic programming problem by augmented Lagrangians. The presented numerical experiments demonstrate our method’s power and the importance of the proper modelling of 3D frictional contact problems. The state problem solution and the sensitivity analysis process were implemented in parallel.},
author = {Markopoulos, Alexandros, Beremlijski, Petr, Vlach, Oldřich, Sadowská, Marie},
journal = {Applications of Mathematics},
keywords = {shape optimization; nonsmooth optimization; contact problem; Coulomb's friction; TFETI method},
language = {eng},
number = {4},
pages = {405-424},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Solution of 3D contact shape optimization problems with Coulomb friction based on TFETI},
url = {http://eudml.org/doc/299601},
volume = {68},
year = {2023},
}

TY - JOUR
AU - Markopoulos, Alexandros
AU - Beremlijski, Petr
AU - Vlach, Oldřich
AU - Sadowská, Marie
TI - Solution of 3D contact shape optimization problems with Coulomb friction based on TFETI
JO - Applications of Mathematics
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 4
SP - 405
EP - 424
AB - The present paper deals with the numerical solution of 3D shape optimization problems in frictional contact mechanics. Mathematical modelling of the Coulomb friction problem leads to an implicit variational inequality which can be written as a fixed point problem. Furthermore, it is known that the discretized problem is uniquely solvable for small coefficients of friction. Since the considered problem is nonsmooth, we exploit the generalized Mordukhovich’s differential calculus to compute the needed subgradient information.The state problem is solved using successive approximations combined with the Total FETI (TFETI) method. The latter is based on tearing the bodies into “floating” subdomains, discretization by finite elements, and solving the resulting quadratic programming problem by augmented Lagrangians. The presented numerical experiments demonstrate our method’s power and the importance of the proper modelling of 3D frictional contact problems. The state problem solution and the sensitivity analysis process were implemented in parallel.
LA - eng
KW - shape optimization; nonsmooth optimization; contact problem; Coulomb's friction; TFETI method
UR - http://eudml.org/doc/299601
ER -

References

top
  1. Beremlijski, P., Haslinger, J., Kočvara, M., Kučera, R., Outrata, J. V., 10.1137/080714427, SIAM J. Optim. 20 (2009), 416-444. (2009) Zbl1186.49028MR2507130DOI10.1137/080714427
  2. Beremlijski, P., Haslinger, J., Kočvara, M., Outrata, J., 10.1137/S1052623401395061, SIAM J. Optim. 13 (2002), 561-587. (2002) Zbl1025.49026MR1951035DOI10.1137/S1052623401395061
  3. Beremlijski, P., Haslinger, J., Outrata, J. V., Pathó, R., 10.1137/130948070, SIAM J. Control Optim. 52 (2014), 3371-3400. (2014) Zbl1307.49040MR3272620DOI10.1137/130948070
  4. Beremlijski, P., Markopoulos, A., 10.1201/b17488-82, EngOpt 2014 4th International Conference on Engineering Optimization IDMEC - Instituto de Engenharia Mecanica, Lisboa (2015), 465-470. (2015) DOI10.1201/b17488-82
  5. Clarke, F. H., 10.1137/1.9781611971309, Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons, New York (1983). (1983) Zbl0582.49001MR0709590DOI10.1137/1.9781611971309
  6. Dostál, Z., Kozubek, T., Markopoulos, A., Brzobohatý, T., Vondrák, V., Horyl, P., 10.1016/j.cma.2011.02.015, Comput. Methods Appl. Mech. Eng. 205-208 (2012), 110-120. (2012) Zbl1239.74064MR2872030DOI10.1016/j.cma.2011.02.015
  7. Dostál, Z., Kozubek, T., Sadowská, M., Vondrák, V., 10.1007/978-1-4939-6834-3, Advances in Mechanics and Mathematics 36. Springer, New York (2016). (2016) Zbl1383.74002MR3586594DOI10.1007/978-1-4939-6834-3
  8. Farhat, C., Roux, F.-X., 10.1137/0913020, SIAM J. Sci. Stat. Comput. 13 (1992), 379-396. (1992) Zbl0746.65086MR1145192DOI10.1137/0913020
  9. Haslinger, J., Kozubek, T., Kučera, R., Peichl, G., 10.1002/nla.550, Numer. Linear Algebra Appl. 14 (2007), 713-739. (2007) Zbl1199.65102MR2361187DOI10.1002/nla.550
  10. Kučera, R., 10.1080/10556780600609246, Optim. Methods Softw. 22 (2007), 453-467. (2007) Zbl1136.65062MR2319243DOI10.1080/10556780600609246
  11. Kučera, R., Motyčková, K., Markopoulos, A., Haslinger, J., 10.1080/10556788.2018.1556659, Optim. Methods Softw. 35 (2020), 65-86. (2020) Zbl07136209MR4032941DOI10.1080/10556788.2018.1556659
  12. Mordukhovich, B. S., Variational Analysis and Generalized Differentiation. I. Basic Theory, Grundlehren der Mathematischen Wissenschaften 330. Springer, Berlin (2006),9999DOI99999 10.1007/3-540-31247-1 . (2006) Zbl1100.49002MR2191744
  13. Mordukhovich, B. S., 10.1007/3-540-31246-3, Grundlehren der Mathematischen Wissenschaften 331. Springer, Berlin (2006). (2006) Zbl1100.49002MR2191745DOI10.1007/3-540-31246-3
  14. Mordukhovich, B. S., 10.1007/978-3-319-92775-6, Springer Monographs in Mathematics. Springer, Cham (2018). (2018) Zbl1402.49003MR3823783DOI10.1007/978-3-319-92775-6
  15. Myśliński, A., 10.1063/5.0008122, AIP Conf. Proc. 2239 (2020), Article ID 020031, 2 pages. (2020) DOI10.1063/5.0008122
  16. Outrata, J. V., Kočvara, M., Zowe, J., 10.1007/978-1-4757-2825-5, Nonconvex Optimization and Its Applications 28. Kluwer, Dordrecht (1998). (1998) Zbl0947.90093MR1641213DOI10.1007/978-1-4757-2825-5
  17. Říha, L., Brzobohatý, T., Markopoulos, A., 10.1016/j.advengsoft.2016.04.004, Adv. Eng. Softw. 103 (2017), 29-37. (2017) DOI10.1016/j.advengsoft.2016.04.004
  18. Rockafellar, R. T., Wets, R. J.-B., 10.1007/978-3-642-02431-3, Grundlehren der Mathematischen Wissenschaften 317. Springer, Berlin (1998). (1998) Zbl0888.49001MR1491362DOI10.1007/978-3-642-02431-3
  19. Schramm, H., Zowe, J., 10.1137/0802008, SIAM J. Optim. 2 (1992), 121-152. (1992) Zbl0761.90090MR1147886DOI10.1137/0802008
  20. Sharma, A., Rangarajan, R., 10.1002/nme.5960, Int. J. Numer. Methods Eng. 117 (2019), 371-404. (2019) MR3903330DOI10.1002/nme.5960
  21. Vondrák, V., Kozubek, T., Markopoulos, A., Dostál, Z., 10.1007/s00158-010-0537-3, Struct. Multidiscip. Optim. 42 (2010), 955-964. (2010) Zbl1274.74407MR2735250DOI10.1007/s00158-010-0537-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.