New bounds on the Laplacian spectral ratio of connected graphs

Zhen Lin; Min Cai; Jiajia Wang

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 4, page 1207-1220
  • ISSN: 0011-4642

Abstract

top
Let G be a simple connected undirected graph. The Laplacian spectral ratio of G is defined as the quotient between the largest and second smallest Laplacian eigenvalues of G , which is an important parameter in graph theory and networks. We obtain some bounds of the Laplacian spectral ratio in terms of the number of the spanning trees and the sum of powers of the Laplacian eigenvalues. In addition, we study the extremal Laplacian spectral ratio among trees with n vertices, which improves some known results of Z. You and B. Liu (2012).

How to cite

top

Lin, Zhen, Cai, Min, and Wang, Jiajia. "New bounds on the Laplacian spectral ratio of connected graphs." Czechoslovak Mathematical Journal 74.4 (2024): 1207-1220. <http://eudml.org/doc/299605>.

@article{Lin2024,
abstract = {Let $G$ be a simple connected undirected graph. The Laplacian spectral ratio of $G$ is defined as the quotient between the largest and second smallest Laplacian eigenvalues of $G$, which is an important parameter in graph theory and networks. We obtain some bounds of the Laplacian spectral ratio in terms of the number of the spanning trees and the sum of powers of the Laplacian eigenvalues. In addition, we study the extremal Laplacian spectral ratio among trees with $n$ vertices, which improves some known results of Z. You and B. Liu (2012).},
author = {Lin, Zhen, Cai, Min, Wang, Jiajia},
journal = {Czechoslovak Mathematical Journal},
keywords = {Laplacian eigenvalue; ratio; tree; bound},
language = {eng},
number = {4},
pages = {1207-1220},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {New bounds on the Laplacian spectral ratio of connected graphs},
url = {http://eudml.org/doc/299605},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Lin, Zhen
AU - Cai, Min
AU - Wang, Jiajia
TI - New bounds on the Laplacian spectral ratio of connected graphs
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 4
SP - 1207
EP - 1220
AB - Let $G$ be a simple connected undirected graph. The Laplacian spectral ratio of $G$ is defined as the quotient between the largest and second smallest Laplacian eigenvalues of $G$, which is an important parameter in graph theory and networks. We obtain some bounds of the Laplacian spectral ratio in terms of the number of the spanning trees and the sum of powers of the Laplacian eigenvalues. In addition, we study the extremal Laplacian spectral ratio among trees with $n$ vertices, which improves some known results of Z. You and B. Liu (2012).
LA - eng
KW - Laplacian eigenvalue; ratio; tree; bound
UR - http://eudml.org/doc/299605
ER -

References

top
  1. Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C., 10.1016/j.physrep.2008.09.002, Phys. Rep. 469 (2008), 93-153. (2008) MR2477097DOI10.1016/j.physrep.2008.09.002
  2. Barahona, M., Pecora, L. M., 10.1103/PhysRevLett.89.054101, Phys. Rev. Lett. 89 (2002), Article ID 054101. (2002) DOI10.1103/PhysRevLett.89.054101
  3. Barrett, W., Evans, E., Hall, H. T., Kempton, M., 10.1016/j.laa.2022.04.021, Linear Algebra Appl. 648 (2022), 104-132. (2022) Zbl1490.05154MR4419000DOI10.1016/j.laa.2022.04.021
  4. Brouwer, A. E., Haemers, W. H., 10.1016/j.laa.2004.08.014, Linear Algebra Appl. 395 (2005), 155-162. (2005) Zbl1056.05097MR2112881DOI10.1016/j.laa.2004.08.014
  5. Chen, X., Das, K. C., 10.1016/j.laa.2016.05.002, Linear Algebra Appl. 505 (2016), 245-260. (2016) Zbl1338.05158MR3506494DOI10.1016/j.laa.2016.05.002
  6. Chvátal, V., 10.1016/0012-365X(73)90138-6, Discrete Math. 5 (1973), 215-228. (1973) Zbl0256.05122MR0316301DOI10.1016/0012-365X(73)90138-6
  7. Cirtoaje, V., 10.1155/2010/128258, J. Inequal. Appl. 2010 (2010), Article ID 128258, 12 pages. (2010) Zbl1204.26031MR2749168DOI10.1155/2010/128258
  8. Cvetković, D., Rowlinson, P., Simić, S., 10.1017/CBO9780511801518, London Mathematical Society Student Texts 75. Cambridge University Press, Cambridge (2010). (2010) Zbl1211.05002MR2571608DOI10.1017/CBO9780511801518
  9. Fiedler, M., 10.21136/CMJ.1973.101168, Czech. Math. J. 23 (1973), 298-305. (1973) Zbl0265.05119MR0318007DOI10.21136/CMJ.1973.101168
  10. Filho, D. F. T., Justel, C. M., 10.1007/s40314-023-02497-2, Comput. Appl. Math. 42 (2023), Article ID 364, 12 pages. (2023) Zbl1538.05033MR4670565DOI10.1007/s40314-023-02497-2
  11. Furtula, B., Gutman, I., 10.1007/s10910-015-0480-z, J. Math. Chem. 53 (2015), 1184-1190. (2015) Zbl1317.05031MR3317408DOI10.1007/s10910-015-0480-z
  12. Goldberg, F., 10.1016/j.laa.2005.07.007, Linear Algebra Appl. 416 (2006), 68-74. (2006) Zbl1107.05059MR2232920DOI10.1016/j.laa.2005.07.007
  13. Grone, R., Merris, R., 10.1137/S0895480191222653, SIAM J. Discrete Math. 7 (1994), 221-229. (1994) Zbl0795.05092MR1271994DOI10.1137/S0895480191222653
  14. Grone, R., Merris, R., Sunder, V. S., 10.1137/0611016, SIAM J. Matrix Anal. Appl. 11 (1990), 218-238. (1990) Zbl0733.05060MR1041245DOI10.1137/0611016
  15. Gu, X., Liu, M., 10.1016/j.ejc.2021.103468, Eur. J. Comb. 101 (2022), Article ID 103468, 8 pages. (2022) Zbl1480.05106MR4338938DOI10.1016/j.ejc.2021.103468
  16. Gutman, I., Trinajstić, N., 10.1016/0009-2614(72)85099-1, Chem. Phys. Lett. 17 (1972), 535-538. (1972) DOI10.1016/0009-2614(72)85099-1
  17. Haemers, W. H., 10.1016/0024-3795(95)00199-2, Linear Algebra Appl. 226-228 (1995), 593-616. (1995) Zbl0831.05044MR1344588DOI10.1016/0024-3795(95)00199-2
  18. Kelmans, A. K., The properties of the characteristic polynomial of a graph, Cybernetics-in the service of Communism 4 (1967), 27-41 Russian. (1967) Zbl0204.24403MR0392633
  19. Liu, B., Chen, S., 10.1007/s10587-010-0073-8, Czech. Math. J. 60 (2010), 1079-1089. (2010) Zbl1224.05307MR2738970DOI10.1007/s10587-010-0073-8
  20. Watson, G. S., 10.1093/biomet/42.3-4.327, Biometrika 42 (1955), 327-341. (1955) Zbl0068.33201MR0073096DOI10.1093/biomet/42.3-4.327
  21. You, Z., Liu, B., 10.1016/j.aml.2011.09.071, Appl. Math. Lett. 25 (2012), 1245-1250. (2012) Zbl1248.05116MR2947387DOI10.1016/j.aml.2011.09.071
  22. Zhang, X.-D., 10.1016/j.laa.2007.07.018, Linear Algebra Appl. 427 (2007), 301-312. (2007) Zbl1125.05067MR2351361DOI10.1016/j.laa.2007.07.018
  23. Zhou, B., 10.1016/j.laa.2008.06.023, Linear Algebra Appl. 429 (2008), 2239-2246. (2008) Zbl1144.05325MR2446656DOI10.1016/j.laa.2008.06.023

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.