New bounds on the Laplacian spectral ratio of connected graphs
Zhen Lin; Min Cai; Jiajia Wang
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 4, page 1207-1220
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLin, Zhen, Cai, Min, and Wang, Jiajia. "New bounds on the Laplacian spectral ratio of connected graphs." Czechoslovak Mathematical Journal 74.4 (2024): 1207-1220. <http://eudml.org/doc/299605>.
@article{Lin2024,
abstract = {Let $G$ be a simple connected undirected graph. The Laplacian spectral ratio of $G$ is defined as the quotient between the largest and second smallest Laplacian eigenvalues of $G$, which is an important parameter in graph theory and networks. We obtain some bounds of the Laplacian spectral ratio in terms of the number of the spanning trees and the sum of powers of the Laplacian eigenvalues. In addition, we study the extremal Laplacian spectral ratio among trees with $n$ vertices, which improves some known results of Z. You and B. Liu (2012).},
author = {Lin, Zhen, Cai, Min, Wang, Jiajia},
journal = {Czechoslovak Mathematical Journal},
keywords = {Laplacian eigenvalue; ratio; tree; bound},
language = {eng},
number = {4},
pages = {1207-1220},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {New bounds on the Laplacian spectral ratio of connected graphs},
url = {http://eudml.org/doc/299605},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Lin, Zhen
AU - Cai, Min
AU - Wang, Jiajia
TI - New bounds on the Laplacian spectral ratio of connected graphs
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 4
SP - 1207
EP - 1220
AB - Let $G$ be a simple connected undirected graph. The Laplacian spectral ratio of $G$ is defined as the quotient between the largest and second smallest Laplacian eigenvalues of $G$, which is an important parameter in graph theory and networks. We obtain some bounds of the Laplacian spectral ratio in terms of the number of the spanning trees and the sum of powers of the Laplacian eigenvalues. In addition, we study the extremal Laplacian spectral ratio among trees with $n$ vertices, which improves some known results of Z. You and B. Liu (2012).
LA - eng
KW - Laplacian eigenvalue; ratio; tree; bound
UR - http://eudml.org/doc/299605
ER -
References
top- Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C., 10.1016/j.physrep.2008.09.002, Phys. Rep. 469 (2008), 93-153. (2008) MR2477097DOI10.1016/j.physrep.2008.09.002
- Barahona, M., Pecora, L. M., 10.1103/PhysRevLett.89.054101, Phys. Rev. Lett. 89 (2002), Article ID 054101. (2002) DOI10.1103/PhysRevLett.89.054101
- Barrett, W., Evans, E., Hall, H. T., Kempton, M., 10.1016/j.laa.2022.04.021, Linear Algebra Appl. 648 (2022), 104-132. (2022) Zbl1490.05154MR4419000DOI10.1016/j.laa.2022.04.021
- Brouwer, A. E., Haemers, W. H., 10.1016/j.laa.2004.08.014, Linear Algebra Appl. 395 (2005), 155-162. (2005) Zbl1056.05097MR2112881DOI10.1016/j.laa.2004.08.014
- Chen, X., Das, K. C., 10.1016/j.laa.2016.05.002, Linear Algebra Appl. 505 (2016), 245-260. (2016) Zbl1338.05158MR3506494DOI10.1016/j.laa.2016.05.002
- Chvátal, V., 10.1016/0012-365X(73)90138-6, Discrete Math. 5 (1973), 215-228. (1973) Zbl0256.05122MR0316301DOI10.1016/0012-365X(73)90138-6
- Cirtoaje, V., 10.1155/2010/128258, J. Inequal. Appl. 2010 (2010), Article ID 128258, 12 pages. (2010) Zbl1204.26031MR2749168DOI10.1155/2010/128258
- Cvetković, D., Rowlinson, P., Simić, S., 10.1017/CBO9780511801518, London Mathematical Society Student Texts 75. Cambridge University Press, Cambridge (2010). (2010) Zbl1211.05002MR2571608DOI10.1017/CBO9780511801518
- Fiedler, M., 10.21136/CMJ.1973.101168, Czech. Math. J. 23 (1973), 298-305. (1973) Zbl0265.05119MR0318007DOI10.21136/CMJ.1973.101168
- Filho, D. F. T., Justel, C. M., 10.1007/s40314-023-02497-2, Comput. Appl. Math. 42 (2023), Article ID 364, 12 pages. (2023) Zbl1538.05033MR4670565DOI10.1007/s40314-023-02497-2
- Furtula, B., Gutman, I., 10.1007/s10910-015-0480-z, J. Math. Chem. 53 (2015), 1184-1190. (2015) Zbl1317.05031MR3317408DOI10.1007/s10910-015-0480-z
- Goldberg, F., 10.1016/j.laa.2005.07.007, Linear Algebra Appl. 416 (2006), 68-74. (2006) Zbl1107.05059MR2232920DOI10.1016/j.laa.2005.07.007
- Grone, R., Merris, R., 10.1137/S0895480191222653, SIAM J. Discrete Math. 7 (1994), 221-229. (1994) Zbl0795.05092MR1271994DOI10.1137/S0895480191222653
- Grone, R., Merris, R., Sunder, V. S., 10.1137/0611016, SIAM J. Matrix Anal. Appl. 11 (1990), 218-238. (1990) Zbl0733.05060MR1041245DOI10.1137/0611016
- Gu, X., Liu, M., 10.1016/j.ejc.2021.103468, Eur. J. Comb. 101 (2022), Article ID 103468, 8 pages. (2022) Zbl1480.05106MR4338938DOI10.1016/j.ejc.2021.103468
- Gutman, I., Trinajstić, N., 10.1016/0009-2614(72)85099-1, Chem. Phys. Lett. 17 (1972), 535-538. (1972) DOI10.1016/0009-2614(72)85099-1
- Haemers, W. H., 10.1016/0024-3795(95)00199-2, Linear Algebra Appl. 226-228 (1995), 593-616. (1995) Zbl0831.05044MR1344588DOI10.1016/0024-3795(95)00199-2
- Kelmans, A. K., The properties of the characteristic polynomial of a graph, Cybernetics-in the service of Communism 4 (1967), 27-41 Russian. (1967) Zbl0204.24403MR0392633
- Liu, B., Chen, S., 10.1007/s10587-010-0073-8, Czech. Math. J. 60 (2010), 1079-1089. (2010) Zbl1224.05307MR2738970DOI10.1007/s10587-010-0073-8
- Watson, G. S., 10.1093/biomet/42.3-4.327, Biometrika 42 (1955), 327-341. (1955) Zbl0068.33201MR0073096DOI10.1093/biomet/42.3-4.327
- You, Z., Liu, B., 10.1016/j.aml.2011.09.071, Appl. Math. Lett. 25 (2012), 1245-1250. (2012) Zbl1248.05116MR2947387DOI10.1016/j.aml.2011.09.071
- Zhang, X.-D., 10.1016/j.laa.2007.07.018, Linear Algebra Appl. 427 (2007), 301-312. (2007) Zbl1125.05067MR2351361DOI10.1016/j.laa.2007.07.018
- Zhou, B., 10.1016/j.laa.2008.06.023, Linear Algebra Appl. 429 (2008), 2239-2246. (2008) Zbl1144.05325MR2446656DOI10.1016/j.laa.2008.06.023
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.