Quantised 𝔰𝔩 2 -differential algebras

Andrey Krutov; Pavle Pandžić

Archivum Mathematicum (2024)

  • Volume: 060, Issue: 5, page 351-364
  • ISSN: 0044-8753

Abstract

top
We propose a definition of a quantised 𝔰𝔩 2 -differential algebra and show that the quantised exterior algebra (defined by Berenstein and Zwicknagl) and the quantised Clifford algebra (defined by the authors) of  𝔰𝔩 2 are natural examples of such algebras.

How to cite

top

Krutov, Andrey, and Pandžić, Pavle. "Quantised $\mathfrak {sl}_2$-differential algebras." Archivum Mathematicum 060.5 (2024): 351-364. <http://eudml.org/doc/299612>.

@article{Krutov2024,
abstract = {We propose a definition of a quantised $\{\mathfrak \{sl\}\}_2$-differential algebra and show that the quantised exterior algebra (defined by Berenstein and Zwicknagl) and the quantised Clifford algebra (defined by the authors) of $\{\mathfrak \{sl\}\}_2$ are natural examples of such algebras.},
author = {Krutov, Andrey, Pandžić, Pavle},
journal = {Archivum Mathematicum},
keywords = {quantum group; Clifford algebra; quantised exterior algebra; $\mathfrak \{g\}$-differential algebra},
language = {eng},
number = {5},
pages = {351-364},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Quantised $\mathfrak \{sl\}_2$-differential algebras},
url = {http://eudml.org/doc/299612},
volume = {060},
year = {2024},
}

TY - JOUR
AU - Krutov, Andrey
AU - Pandžić, Pavle
TI - Quantised $\mathfrak {sl}_2$-differential algebras
JO - Archivum Mathematicum
PY - 2024
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 060
IS - 5
SP - 351
EP - 364
AB - We propose a definition of a quantised ${\mathfrak {sl}}_2$-differential algebra and show that the quantised exterior algebra (defined by Berenstein and Zwicknagl) and the quantised Clifford algebra (defined by the authors) of ${\mathfrak {sl}}_2$ are natural examples of such algebras.
LA - eng
KW - quantum group; Clifford algebra; quantised exterior algebra; $\mathfrak {g}$-differential algebra
UR - http://eudml.org/doc/299612
ER -

References

top
  1. Alekseev, A., Krutov, A., Group-valued moment maps on even and odd simple 𝔤 -modules, In preparations. 
  2. Alekseev, A., Meinrenken, E., 10.1007/s002229900025, Invent. Math. 139 (1) (2000), 135–172, arXiv:math/9903052 [math.DG]. (2000) MR1728878DOI10.1007/s002229900025
  3. Alekseev, A., Meinrenken, E., Lie theory and the Chern-Weil homomorphism, Ann. Sci. Éc. Norm. Supér. (4) 38 (2) (2005), 303–338, arXiv:math/0308135 [math.RT]. (2005) MR2144989
  4. Aschieri, P., Castellani, L., 10.1142/S0217751X93000692, Internat. J. Modern Phys. A 8 (10) (1993), 1667–1706. (1993) MR1216230DOI10.1142/S0217751X93000692
  5. Aschieri, P., Schupp, P., 10.1142/S0217751X9600050X, Internat. J. Modern Phys. A 11 (6) (1996), 1077–1100. (1996) MR1376230DOI10.1142/S0217751X9600050X
  6. Berenstein, A., Zwicknagl, S., 10.1090/S0002-9947-08-04373-0, Trans. Amer. Math. Soc. 360 (71) (2008), 3429–3472, arXiv:math/0504155 [math.QA]. (2008) MR2386232DOI10.1090/S0002-9947-08-04373-0
  7. Bouarroudj, S., Krutov, A., Leites, D., Shchepochkina, I., 10.1007/s10468-018-9802-8, Algebr. Represent. Theory 21 (5) (2018), 897–941, arXiv:1806.05505 [math.RT]. (2018) MR3855668DOI10.1007/s10468-018-9802-8
  8. Cartan, H., La transgression dans un groupe de Lie et dans un espace fibré principal, Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège, 1951, pp. 57–71. (1951) MR0042427
  9. Cartan, H., Notions d’algèbre différentielle; application aux groupes de Lie et aux variétés où opère un groupe de Lie, Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège; Masson Cie, Paris, 1951, pp. 15–27. (1951) MR0042426
  10. Cheng, S.-J., 10.1006/jabr.1995.1076, J. Algebra 173 (1) (1995), 1–43. (1995) MR1327359DOI10.1006/jabr.1995.1076
  11. Drinfeld, V. G., Quasi-Hopf algebras, Algebra i Analiz 1 (6) (1989), 114–148. (1989) MR1047964
  12. Drinfeld, V.G., Quantum groups,, Proceedings of the International Congress of Mathematicians, Amer. Math. Soc., Providence, RI, Berkeley, Calif., 1986, 1987, pp. 798–820. (1987) MR0934283
  13. Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V., Tensor categories, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2015. (2015) MR3242743
  14. Guillemin, V.W., Sternberg, S., Supersymmetry and equivariant de Rham theory, Mathematics Past and Present, Springer-Verlag, Berlin, 1999, With an appendix containing two reprints by Henri Cartan [MR0042426 (13,107e); MR0042427 (13,107f)]. (1999) MR1689252
  15. Henriques, A., Kamnitzer, J., 10.1215/S0012-7094-06-13221-0, Duke Math. J. 132 (2) (2006), 191–216. (2006) MR2219257DOI10.1215/S0012-7094-06-13221-0
  16. Huang, J.-S., Pandžić, P., 10.1090/S0894-0347-01-00383-6, J. Amer. Math. Soc. 15 (1) (2002), 185–202. (2002) MR1862801DOI10.1090/S0894-0347-01-00383-6
  17. Huang, J.-S., Pandžić, P., Dirac operators in representation theory, Mathematics: Theory Applications, Birkhäuser Boston, Inc., Boston, MA,, 2006. (2006) Zbl1103.22008MR2244116
  18. Jurčo, B., 10.1007/BF00403543, Lett. Math. Phys. 22 (3) (1991), 177–186. (1991) MR1129172DOI10.1007/BF00403543
  19. Klimyk, A., Schmüdgen, K., Quantum groups and their representations, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997. (1997) MR1492989
  20. Kostant, B., 10.1006/aima.1997.1608, Adv. Math. 125 (2) (1997), 275–350. (1997) MR1434113DOI10.1006/aima.1997.1608
  21. Krutov, A., Pandžić, P., Cubic Dirac operator for U q ( 𝔰𝔩 2 ) , arXiv:2209.09591 [math.RT]. 
  22. Krutov, A.O., Ó Buachalla, R., Strung, K.R., 10.1093/imrn/rnac366, Int. Math. Res. Not. 2023 (23) (2023), 20076–20117. (2023) MR4675067DOI10.1093/imrn/rnac366
  23. Lu, J.-H., 10.1007/BF02099767, Comm. Math. Phys. 157 (2) (1993), 389–404. (1993) MR1244874DOI10.1007/BF02099767
  24. Meinrenken, E., Clifford algebras and Lie theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 58, Springer, Heidelberg, 2013. (2013) MR3052646
  25. Schupp, P., Watts, P., Zumino, B., Cartan calculus on quantum Lie algebras, Differential geometric methods in theoretical physics (Ixtapa-Zihuatanejo, 1993), 1994, pp. 125–134. (1994) MR1337698
  26. Woronowicz, S.L., 10.2977/prims/1195176848, (2) group. An example of a noncommutative differential calculus, Publ. Res. Inst. Math. Sci. 23 (1) (1987), 117–181. (1987) MR0890482DOI10.2977/prims/1195176848

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.