Quantised -differential algebras
Archivum Mathematicum (2024)
- Volume: 060, Issue: 5, page 351-364
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topKrutov, Andrey, and Pandžić, Pavle. "Quantised $\mathfrak {sl}_2$-differential algebras." Archivum Mathematicum 060.5 (2024): 351-364. <http://eudml.org/doc/299612>.
@article{Krutov2024,
abstract = {We propose a definition of a quantised $\{\mathfrak \{sl\}\}_2$-differential algebra and show that the quantised exterior algebra (defined by Berenstein and Zwicknagl) and the quantised Clifford algebra (defined by the authors) of $\{\mathfrak \{sl\}\}_2$ are natural examples of such algebras.},
author = {Krutov, Andrey, Pandžić, Pavle},
journal = {Archivum Mathematicum},
keywords = {quantum group; Clifford algebra; quantised exterior algebra; $\mathfrak \{g\}$-differential algebra},
language = {eng},
number = {5},
pages = {351-364},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Quantised $\mathfrak \{sl\}_2$-differential algebras},
url = {http://eudml.org/doc/299612},
volume = {060},
year = {2024},
}
TY - JOUR
AU - Krutov, Andrey
AU - Pandžić, Pavle
TI - Quantised $\mathfrak {sl}_2$-differential algebras
JO - Archivum Mathematicum
PY - 2024
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 060
IS - 5
SP - 351
EP - 364
AB - We propose a definition of a quantised ${\mathfrak {sl}}_2$-differential algebra and show that the quantised exterior algebra (defined by Berenstein and Zwicknagl) and the quantised Clifford algebra (defined by the authors) of ${\mathfrak {sl}}_2$ are natural examples of such algebras.
LA - eng
KW - quantum group; Clifford algebra; quantised exterior algebra; $\mathfrak {g}$-differential algebra
UR - http://eudml.org/doc/299612
ER -
References
top- Alekseev, A., Krutov, A., Group-valued moment maps on even and odd simple -modules, In preparations.
- Alekseev, A., Meinrenken, E., 10.1007/s002229900025, Invent. Math. 139 (1) (2000), 135–172, arXiv:math/9903052 [math.DG]. (2000) MR1728878DOI10.1007/s002229900025
- Alekseev, A., Meinrenken, E., Lie theory and the Chern-Weil homomorphism, Ann. Sci. Éc. Norm. Supér. (4) 38 (2) (2005), 303–338, arXiv:math/0308135 [math.RT]. (2005) MR2144989
- Aschieri, P., Castellani, L., 10.1142/S0217751X93000692, Internat. J. Modern Phys. A 8 (10) (1993), 1667–1706. (1993) MR1216230DOI10.1142/S0217751X93000692
- Aschieri, P., Schupp, P., 10.1142/S0217751X9600050X, Internat. J. Modern Phys. A 11 (6) (1996), 1077–1100. (1996) MR1376230DOI10.1142/S0217751X9600050X
- Berenstein, A., Zwicknagl, S., 10.1090/S0002-9947-08-04373-0, Trans. Amer. Math. Soc. 360 (71) (2008), 3429–3472, arXiv:math/0504155 [math.QA]. (2008) MR2386232DOI10.1090/S0002-9947-08-04373-0
- Bouarroudj, S., Krutov, A., Leites, D., Shchepochkina, I., 10.1007/s10468-018-9802-8, Algebr. Represent. Theory 21 (5) (2018), 897–941, arXiv:1806.05505 [math.RT]. (2018) MR3855668DOI10.1007/s10468-018-9802-8
- Cartan, H., La transgression dans un groupe de Lie et dans un espace fibré principal, Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège, 1951, pp. 57–71. (1951) MR0042427
- Cartan, H., Notions d’algèbre différentielle; application aux groupes de Lie et aux variétés où opère un groupe de Lie, Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège; Masson Cie, Paris, 1951, pp. 15–27. (1951) MR0042426
- Cheng, S.-J., 10.1006/jabr.1995.1076, J. Algebra 173 (1) (1995), 1–43. (1995) MR1327359DOI10.1006/jabr.1995.1076
- Drinfeld, V. G., Quasi-Hopf algebras, Algebra i Analiz 1 (6) (1989), 114–148. (1989) MR1047964
- Drinfeld, V.G., Quantum groups,, Proceedings of the International Congress of Mathematicians, Amer. Math. Soc., Providence, RI, Berkeley, Calif., 1986, 1987, pp. 798–820. (1987) MR0934283
- Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V., Tensor categories, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2015. (2015) MR3242743
- Guillemin, V.W., Sternberg, S., Supersymmetry and equivariant de Rham theory, Mathematics Past and Present, Springer-Verlag, Berlin, 1999, With an appendix containing two reprints by Henri Cartan [MR0042426 (13,107e); MR0042427 (13,107f)]. (1999) MR1689252
- Henriques, A., Kamnitzer, J., 10.1215/S0012-7094-06-13221-0, Duke Math. J. 132 (2) (2006), 191–216. (2006) MR2219257DOI10.1215/S0012-7094-06-13221-0
- Huang, J.-S., Pandžić, P., 10.1090/S0894-0347-01-00383-6, J. Amer. Math. Soc. 15 (1) (2002), 185–202. (2002) MR1862801DOI10.1090/S0894-0347-01-00383-6
- Huang, J.-S., Pandžić, P., Dirac operators in representation theory, Mathematics: Theory Applications, Birkhäuser Boston, Inc., Boston, MA,, 2006. (2006) Zbl1103.22008MR2244116
- Jurčo, B., 10.1007/BF00403543, Lett. Math. Phys. 22 (3) (1991), 177–186. (1991) MR1129172DOI10.1007/BF00403543
- Klimyk, A., Schmüdgen, K., Quantum groups and their representations, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997. (1997) MR1492989
- Kostant, B., 10.1006/aima.1997.1608, Adv. Math. 125 (2) (1997), 275–350. (1997) MR1434113DOI10.1006/aima.1997.1608
- Krutov, A., Pandžić, P., Cubic Dirac operator for , arXiv:2209.09591 [math.RT].
- Krutov, A.O., Ó Buachalla, R., Strung, K.R., 10.1093/imrn/rnac366, Int. Math. Res. Not. 2023 (23) (2023), 20076–20117. (2023) MR4675067DOI10.1093/imrn/rnac366
- Lu, J.-H., 10.1007/BF02099767, Comm. Math. Phys. 157 (2) (1993), 389–404. (1993) MR1244874DOI10.1007/BF02099767
- Meinrenken, E., Clifford algebras and Lie theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 58, Springer, Heidelberg, 2013. (2013) MR3052646
- Schupp, P., Watts, P., Zumino, B., Cartan calculus on quantum Lie algebras, Differential geometric methods in theoretical physics (Ixtapa-Zihuatanejo, 1993), 1994, pp. 125–134. (1994) MR1337698
- Woronowicz, S.L., 10.2977/prims/1195176848, (2) group. An example of a noncommutative differential calculus, Publ. Res. Inst. Math. Sci. 23 (1) (1987), 117–181. (1987) MR0890482DOI10.2977/prims/1195176848
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.