Braided coproduct, antipode and adjoint action for
Archivum Mathematicum (2024)
- Volume: 060, Issue: 5, page 365-376
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topPandžić, Pavle, and Somberg, Petr. "Braided coproduct, antipode and adjoint action for $U_q(sl_2)$." Archivum Mathematicum 060.5 (2024): 365-376. <http://eudml.org/doc/299617>.
@article{Pandžić2024,
abstract = {Motivated by our attempts to construct an analogue of the Dirac operator in the setting of $U_q(\mathfrak \{sl\}_n)$, we write down explicitly the braided coproduct, antipode, and adjoint action for quantum algebra $U_q(\mathfrak \{sl\}_2)$. The braided adjoint action is seen to coincide with the ordinary quantum adjoint action, which also follows from the general results of S. Majid.},
author = {Pandžić, Pavle, Somberg, Petr},
journal = {Archivum Mathematicum},
keywords = {quantum group; quantum $\mathfrak \{sl\}_2$; quantum adjoint action; tensor categories; braided tensor product; braided adjoint action},
language = {eng},
number = {5},
pages = {365-376},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Braided coproduct, antipode and adjoint action for $U_q(sl_2)$},
url = {http://eudml.org/doc/299617},
volume = {060},
year = {2024},
}
TY - JOUR
AU - Pandžić, Pavle
AU - Somberg, Petr
TI - Braided coproduct, antipode and adjoint action for $U_q(sl_2)$
JO - Archivum Mathematicum
PY - 2024
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 060
IS - 5
SP - 365
EP - 376
AB - Motivated by our attempts to construct an analogue of the Dirac operator in the setting of $U_q(\mathfrak {sl}_n)$, we write down explicitly the braided coproduct, antipode, and adjoint action for quantum algebra $U_q(\mathfrak {sl}_2)$. The braided adjoint action is seen to coincide with the ordinary quantum adjoint action, which also follows from the general results of S. Majid.
LA - eng
KW - quantum group; quantum $\mathfrak {sl}_2$; quantum adjoint action; tensor categories; braided tensor product; braided adjoint action
UR - http://eudml.org/doc/299617
ER -
References
top- Burdik, C., Navratil, O., Posta, S., 10.1142/S1402925109000066, J. Nonlinear Math. Phys. 16 (1) (2009), 63–75. (2009) MR2571814DOI10.1142/S1402925109000066
- Huang, J.-S., Pandžić, P., 10.1090/S0894-0347-01-00383-6, J. Amer. Math. Soc. 15 (1) (2002), 185–202. (2002) MR1862801DOI10.1090/S0894-0347-01-00383-6
- Huang, J.-S., Pandžić, P., Dirac Operators in Representation Theory, Mathematics: Theory and Applications, Birkhauser, 2006. (2006) MR2244116
- Klimyk, A., Schmüdgen, K., Quantum groups and their representations, Texts and Monographs in Physics, pp. xx+552, Springer-Verlag, Berlin, 1997. (1997) MR1492989
- Majid, S., 10.1063/1.530193, J. Math. Phys. 34 (1993), 1176–1196, https://doi.org/10.1063/1.530193. (1993) MR1207978DOI10.1063/1.530193
- Majid, S., 10.1017/S0305004100075769, Mathematical Proceedings of the Cambridge Philosophical Society, vol. 113, 1993, pp. 45–70. (1993) MR1188817DOI10.1017/S0305004100075769
- Majid, S., Algebras and Hopf algebras in braided categories, Advances in Hopf algebras, vol. 158, Marcel Dekker, Lec. Notes Pure Appl. Math. ed., 1994. (1994) MR1289422
- Majid, S., Foundations of Quantum Group Theory, Cambridge University Press, 1995. (1995) MR1381692
- Majid, S., 10.1088/1751-8121/ac631f, J. Phys. A: Math. Theor. 55 (2022), 34 pp., paper No. 254007. (2022) MR4438638DOI10.1088/1751-8121/ac631f
- Pandžić, P., Somberg, P., Dirac operator for the quantum group , in preparation.
- Pandžić, P., Somberg, P., Dirac operator and its cohomology for the quantum group , J. Math. Phys. 58 (4) (2017), 13 pp., Paper No. 041702. (2017) MR3632540
- Parthasarathy, R., 10.2307/1970892, Ann. of Math. 96 (1972), 1–30. (1972) MR0318398DOI10.2307/1970892
- Vogan, D., Dirac operators and unitary representations, 3 talks at MIT Lie groups seminar, Fall 1997.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.