Braided coproduct, antipode and adjoint action for U q ( s l 2 )

Pavle Pandžić; Petr Somberg

Archivum Mathematicum (2024)

  • Volume: 060, Issue: 5, page 365-376
  • ISSN: 0044-8753

Abstract

top
Motivated by our attempts to construct an analogue of the Dirac operator in the setting of U q ( 𝔰𝔩 n ) , we write down explicitly the braided coproduct, antipode, and adjoint action for quantum algebra U q ( 𝔰𝔩 2 ) . The braided adjoint action is seen to coincide with the ordinary quantum adjoint action, which also follows from the general results of S. Majid.

How to cite

top

Pandžić, Pavle, and Somberg, Petr. "Braided coproduct, antipode and adjoint action for $U_q(sl_2)$." Archivum Mathematicum 060.5 (2024): 365-376. <http://eudml.org/doc/299617>.

@article{Pandžić2024,
abstract = {Motivated by our attempts to construct an analogue of the Dirac operator in the setting of $U_q(\mathfrak \{sl\}_n)$, we write down explicitly the braided coproduct, antipode, and adjoint action for quantum algebra $U_q(\mathfrak \{sl\}_2)$. The braided adjoint action is seen to coincide with the ordinary quantum adjoint action, which also follows from the general results of S. Majid.},
author = {Pandžić, Pavle, Somberg, Petr},
journal = {Archivum Mathematicum},
keywords = {quantum group; quantum $\mathfrak \{sl\}_2$; quantum adjoint action; tensor categories; braided tensor product; braided adjoint action},
language = {eng},
number = {5},
pages = {365-376},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Braided coproduct, antipode and adjoint action for $U_q(sl_2)$},
url = {http://eudml.org/doc/299617},
volume = {060},
year = {2024},
}

TY - JOUR
AU - Pandžić, Pavle
AU - Somberg, Petr
TI - Braided coproduct, antipode and adjoint action for $U_q(sl_2)$
JO - Archivum Mathematicum
PY - 2024
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 060
IS - 5
SP - 365
EP - 376
AB - Motivated by our attempts to construct an analogue of the Dirac operator in the setting of $U_q(\mathfrak {sl}_n)$, we write down explicitly the braided coproduct, antipode, and adjoint action for quantum algebra $U_q(\mathfrak {sl}_2)$. The braided adjoint action is seen to coincide with the ordinary quantum adjoint action, which also follows from the general results of S. Majid.
LA - eng
KW - quantum group; quantum $\mathfrak {sl}_2$; quantum adjoint action; tensor categories; braided tensor product; braided adjoint action
UR - http://eudml.org/doc/299617
ER -

References

top
  1. Burdik, C., Navratil, O., Posta, S., 10.1142/S1402925109000066, J. Nonlinear Math. Phys. 16 (1) (2009), 63–75. (2009) MR2571814DOI10.1142/S1402925109000066
  2. Huang, J.-S., Pandžić, P., 10.1090/S0894-0347-01-00383-6, J. Amer. Math. Soc. 15 (1) (2002), 185–202. (2002) MR1862801DOI10.1090/S0894-0347-01-00383-6
  3. Huang, J.-S., Pandžić, P., Dirac Operators in Representation Theory, Mathematics: Theory and Applications, Birkhauser, 2006. (2006) MR2244116
  4. Klimyk, A., Schmüdgen, K., Quantum groups and their representations, Texts and Monographs in Physics, pp. xx+552, Springer-Verlag, Berlin, 1997. (1997) MR1492989
  5. Majid, S., 10.1063/1.530193, J. Math. Phys. 34 (1993), 1176–1196, https://doi.org/10.1063/1.530193. (1993) MR1207978DOI10.1063/1.530193
  6. Majid, S., 10.1017/S0305004100075769, Mathematical Proceedings of the Cambridge Philosophical Society, vol. 113, 1993, pp. 45–70. (1993) MR1188817DOI10.1017/S0305004100075769
  7. Majid, S., Algebras and Hopf algebras in braided categories, Advances in Hopf algebras, vol. 158, Marcel Dekker, Lec. Notes Pure Appl. Math. ed., 1994. (1994) MR1289422
  8. Majid, S., Foundations of Quantum Group Theory, Cambridge University Press, 1995. (1995) MR1381692
  9. Majid, S., 10.1088/1751-8121/ac631f, J. Phys. A: Math. Theor. 55 (2022), 34 pp., paper No. 254007. (2022) MR4438638DOI10.1088/1751-8121/ac631f
  10. Pandžić, P., Somberg, P., Dirac operator for the quantum group U q ( 𝔰𝔩 3 ) , in preparation. 
  11. Pandžić, P., Somberg, P., Dirac operator and its cohomology for the quantum group U q ( 𝔰𝔩 2 ) , J. Math. Phys. 58 (4) (2017), 13 pp., Paper No. 041702. (2017) MR3632540
  12. Parthasarathy, R., 10.2307/1970892, Ann. of Math. 96 (1972), 1–30. (1972) MR0318398DOI10.2307/1970892
  13. Vogan, D., Dirac operators and unitary representations, 3 talks at MIT Lie groups seminar, Fall 1997. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.