Exact solutions of generalized Lane-Emden equations of the second kind
Applications of Mathematics (2024)
- Volume: 69, Issue: 6, page 747-755
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topKasapoğlu, Kısmet. "Exact solutions of generalized Lane-Emden equations of the second kind." Applications of Mathematics 69.6 (2024): 747-755. <http://eudml.org/doc/299619>.
@article{Kasapoğlu2024,
abstract = {Contact and Lie point symmetries of a certain class of second order differential equations using the Lie symmetry theory are obtained. Generators of these symmetries are used to obtain first integrals and exact solutions of the equations. This class of equations is transformed into the so-called generalized Lane-Emden equations of the second kind \[ y^\{\prime \prime \}(x)+\frac\{k\}\{x\}y^\{\prime \}(x)+ g(x)\{\rm e\}^\{ny\}=0. \]
Then we consider two types of functions $g(x)$ and present first integrals and exact solutions of the Lane-Emden equation for them. One of the considered cases is new.},
author = {Kasapoğlu, Kısmet},
journal = {Applications of Mathematics},
keywords = {Lie point symmetry; contact symmetry; first integral; Lane-Emden differential equation},
language = {eng},
number = {6},
pages = {747-755},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Exact solutions of generalized Lane-Emden equations of the second kind},
url = {http://eudml.org/doc/299619},
volume = {69},
year = {2024},
}
TY - JOUR
AU - Kasapoğlu, Kısmet
TI - Exact solutions of generalized Lane-Emden equations of the second kind
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 6
SP - 747
EP - 755
AB - Contact and Lie point symmetries of a certain class of second order differential equations using the Lie symmetry theory are obtained. Generators of these symmetries are used to obtain first integrals and exact solutions of the equations. This class of equations is transformed into the so-called generalized Lane-Emden equations of the second kind \[ y^{\prime \prime }(x)+\frac{k}{x}y^{\prime }(x)+ g(x){\rm e}^{ny}=0. \]
Then we consider two types of functions $g(x)$ and present first integrals and exact solutions of the Lane-Emden equation for them. One of the considered cases is new.
LA - eng
KW - Lie point symmetry; contact symmetry; first integral; Lane-Emden differential equation
UR - http://eudml.org/doc/299619
ER -
References
top- Bluman, G. W., Kumei, S., 10.1007/978-1-4757-4307-4, Applied Mathematical Sciences 81. Springer, Berlin (1989). (1989) Zbl0698.35001MR1006433DOI10.1007/978-1-4757-4307-4
- Bozhkov, Y., Martins, A. C. Gilli, 10.1016/j.na.2004.03.016, Nonlinear Anal., Theory Methods Appl., Ser. A 57 (2004), 773-793. (2004) Zbl1061.34030MR2067733DOI10.1016/j.na.2004.03.016
- Chambré, P. L., 10.1063/1.1700291, J. Chem. Phys. 20 (1952), 1795-1797. (1952) DOI10.1063/1.1700291
- Emden, R., Gaskugeln. Anwendung der mechanischen Wärmetheorie auf kosmologische und meteorologische Probleme, B. G. Teubner, Leipzig (1907), German 9999JFM99999 38.0952.02. (1907) MR1547801
- Frank-Kamenetskii, D. A., Diffusion and Heat Transfer in Chemical Kinetics, Plenum Press, New York (1969). (1969)
- Goenner, H., 10.1023/A:1010255807935, Gen. Relativ. Gravitation 33 (2001), 833-841. (2001) Zbl0989.83024MR1839009DOI10.1023/A:1010255807935
- Harley, C., Momoniat, E., 10.1142/S0217984907013250, Mod. Phys. Lett. B 21 (2007), 831-841. (2007) Zbl1115.80005DOI10.1142/S0217984907013250
- Harley, C., Momoniat, E., 10.2991/jnmp.2008.15.s1.6, J. Nonlinear Math. Phys., Suppl. 1 15 (2008), 69-76. (2008) MR2434706DOI10.2991/jnmp.2008.15.s1.6
- Harley, C., Momoniat, E., 10.1016/j.amc.2007.08.077, Appl. Math. Comput. 198 (2008), 621-633. (2008) Zbl1146.34031MR2405965DOI10.1016/j.amc.2007.08.077
- Hydon, P. E., 10.1017/CBO9780511623967, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2000). (2000) Zbl0951.34001MR1741548DOI10.1017/CBO9780511623967
- Ibragimov, N. H., Elementary Lie Group Analysis and Ordinary Differential Equations, Wiley Series in Mathematical Methods in Practice 4. Willey, Chichester (1999). (1999) Zbl1047.34001MR1679646
- Khalique, C. M., Mahomed, F. M., Muatjetjeja, B., 10.2991/jnmp.2008.15.2.3, J. Nonlinear Math. Phys. 15 (2008), 152-161. (2008) Zbl1169.34033MR2430716DOI10.2991/jnmp.2008.15.2.3
- Khalique, C. M., Ntsime, P., 10.1016/j.newast.2008.01.002, New Astronomy 13 (2008), 476-480. (2008) DOI10.1016/j.newast.2008.01.002
- Muatjetjeja, B., Khalique, C. M., 10.1007/S12043-011-0174-4, Pramana - J. Phys. 77 (2011), 545-554. (2011) DOI10.1007/S12043-011-0174-4
- Oliveri, F., 10.3390/sym2020658, Symmetry 2 (2010), 658-706. (2010) Zbl1284.22014MR2804858DOI10.3390/sym2020658
- Olver, P. J., 10.1007/978-1-4612-4350-2, Graduate Texts in Mathematics 107. Springer, New York (1993). (1993) Zbl0785.58003MR1240056DOI10.1007/978-1-4612-4350-2
- Stephani, H., 10.1017/CBO9780511599941, Cambridge University Press, Cambridge (1989). (1989) Zbl0704.34001MR1041800DOI10.1017/CBO9780511599941
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.