Quantized semisimple Lie groups
Archivum Mathematicum (2024)
- Volume: 060, Issue: 5, page 311-349
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topFioresi, Rita, and Yuncken, Robert. "Quantized semisimple Lie groups." Archivum Mathematicum 060.5 (2024): 311-349. <http://eudml.org/doc/299628>.
@article{Fioresi2024,
abstract = {The goal of this expository paper is to give a quick introduction to $q$-deformations of semisimple Lie groups. We discuss principally the rank one examples of $\mathcal \{U\}_q(\mathfrak \{sl\}_2)$, $\mathcal \{O\}(\mathrm \{SU\}_q(2))$, $\mathcal \{D\}(\mathrm \{SL\}_q(2,\mathbb \{C\}))$ and related algebras. We treat quantized enveloping algebras, representations of $\mathcal \{U\}_q(\mathfrak \{sl\}_2)$, generalities on Hopf algebras and quantum groups, $*$-structures, quantized algebras of functions on $q$-deformed compact semisimple groups, the Peter-Weyl theorem, $*$-Hopf algebras associated to complex semisimple Lie groups and the Drinfeld double, representations of $\mathrm \{SL\}_q(2,\mathbb \{C\})$, the Plancherel formula for $\mathrm \{SL\}_q(2,\mathbb \{C\})$. This exposition is expanding the material treated in a series of lectures given by the second author at the CaLISTA CA 21100 Training School, “Quantum Groups and Noncommutative Geometry in Prague” in 2023.},
author = {Fioresi, Rita, Yuncken, Robert},
journal = {Archivum Mathematicum},
keywords = {quantum groups; representation theory; semisimple Lie algebras},
language = {eng},
number = {5},
pages = {311-349},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Quantized semisimple Lie groups},
url = {http://eudml.org/doc/299628},
volume = {060},
year = {2024},
}
TY - JOUR
AU - Fioresi, Rita
AU - Yuncken, Robert
TI - Quantized semisimple Lie groups
JO - Archivum Mathematicum
PY - 2024
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 060
IS - 5
SP - 311
EP - 349
AB - The goal of this expository paper is to give a quick introduction to $q$-deformations of semisimple Lie groups. We discuss principally the rank one examples of $\mathcal {U}_q(\mathfrak {sl}_2)$, $\mathcal {O}(\mathrm {SU}_q(2))$, $\mathcal {D}(\mathrm {SL}_q(2,\mathbb {C}))$ and related algebras. We treat quantized enveloping algebras, representations of $\mathcal {U}_q(\mathfrak {sl}_2)$, generalities on Hopf algebras and quantum groups, $*$-structures, quantized algebras of functions on $q$-deformed compact semisimple groups, the Peter-Weyl theorem, $*$-Hopf algebras associated to complex semisimple Lie groups and the Drinfeld double, representations of $\mathrm {SL}_q(2,\mathbb {C})$, the Plancherel formula for $\mathrm {SL}_q(2,\mathbb {C})$. This exposition is expanding the material treated in a series of lectures given by the second author at the CaLISTA CA 21100 Training School, “Quantum Groups and Noncommutative Geometry in Prague” in 2023.
LA - eng
KW - quantum groups; representation theory; semisimple Lie algebras
UR - http://eudml.org/doc/299628
ER -
References
top- Bernstein, I.N., Gelfand, I.M., Gelfand, S.I., Differential operators on the base affine space and a study of -modules, Halsted Press [John Wiley & Sons, Inc.], New York-Toronto, Ont., 1975, 21–64. (1975) MR0578996
- Buffenoir, E., Roche, Ph., 10.1007/s002200050736, Comm. Math. Phys. 207 (3) (1999), 499–555. (1999) MR1727241DOI10.1007/s002200050736
- Čap, A., Slovák, J., Souček, V., 10.2307/3062111, Ann. of Math. (2) 154 (1) (2001), 97–113. (2001) MR1847589DOI10.2307/3062111
- De Commer, K., 10.1007/s00220-011-1208-y, Comm. Math. Phys. 304 (1) (2011), 187–228. (2011) MR2793934DOI10.1007/s00220-011-1208-y
- De Commer, K., Dzokou Talla, J.R., Invariant integrals on coideals and their drinfeld doubles, arXiv:2112.07476 [math.QA], 2021. MR4776189
- De Commer, K., Dzokou Talla, J.R., Quantum and its irreducible representations, arXiv:2107.04258 [math.QA], 2021. MR4750927
- Dixmier, J., 10.1090/gsm/011/02, Grad. Stud. Math., vol. 11, Providence, RI: AMS, American Mathematical Society, 1996. (1996) MR1393197DOI10.1090/gsm/011/02
- Drinfel’d, V.G., Quantum groups, Proc. Int. Congr. Math., vol. 1, Berkeley/Calif 1986, 1987, pp. 798–820. (1987) MR0934283
- Drinfel’d, V.G., 10.1007/BF01247086, Journal of Soviet Mathematics 41 92) (1988), 898–915. (1988) MR0869575DOI10.1007/BF01247086
- Faddeev, L.D., Reshetikhin, N.Yu., Takhtadzhan, L.A., Quantization of Lie groups and Lie algebras, Algebraic Analysis 1 (1989), 129–139, Dedicated to Prof. Mikio Sato on the Occas. of his Sixtieth Birthday. (1989) MR1015339
- Fioresi, R., Lledó, M.A., The Minkowski and conformal superspaces. The classical and quantum descriptions, Hackensack, NJ: World Scientific, 2015. (2015) MR3328668
- Gavarini, F., The global quantum duality principle, J. Reine Angew. Math. 612 (2007), 17–33. (2007) MR2364072
- Heckenberger, I., Kolb, S., 10.1007/s00031-007-0059-2, Transform. Groups 12 (4) (2007), 647–655. (2007) MR2365438DOI10.1007/s00031-007-0059-2
- Heckenberger, I., Kolb, S., 10.1016/j.geomphys.2007.07.005, J. Geom. Phys. 57 (11) (2007), 2316–2344. (2007) MR2360244DOI10.1016/j.geomphys.2007.07.005
- Helgason, S., 10.1090/gsm/034, Grad. Stud. Math., vol. 34, Providence, RI: American Mathematical Society (AMS), 2001, reprint with corrections of the 1978 original edition. (2001) MR1834454DOI10.1090/gsm/034
- Jimbo, M., 10.1007/BF00400222, Lett. Math. Phys. 11 (1986), 247–252. (1986) MR0841713DOI10.1007/BF00400222
- Joseph, A., Quantum groups and their primitive ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 29, Springer Verlag, Berlin, 1995. (1995) MR1315966
- Kassel, Ch., Quantum groups, Grad. Texts Math., vol. 155, New York, NY: Springer Verlag, 1995. (1995) MR1321145
- Klimyk, A., Schmüdgen, K., Quantum groups and their representations, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997. (1997) MR1492989
- Knapp, A.W., Lie groups beyond an introduction, 2nd ed., Progress in Mathematics, vol. 140, Birkhäuser Boston, Inc., Boston, MA, 2002. (2002) MR1920389
- Koelink, E., Kustermans, J., 10.1007/s00220-002-0736-x, Comm. Math. Phys. 233 (2) (2003), 231–296. (2003) MR1962042DOI10.1007/s00220-002-0736-x
- Kulish, P.P., Reshetikhin, N.Yu., Quantum linear problem for the sine-gordon equation and higher representations, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 101 (1981), 101–110. (1981) MR0623928
- Montgomery, S., Hopf algebras and their actions on rings, Reg. Conf. Ser. Math., vol. 82, Providence, RI: American Mathematical Society, 1993, Expanded version of ten lectures given at the CBMS Conference on Hopf algebras and their actions on rings, which took place at DePaul University in Chicago, USA, August 10-14, 1992. (1993) MR1243637
- Ó Buachalla, R., Somberg, P., Lusztig’s quantum root vectors and a Dolbeault complex for the -series full quantum flag manifolds, arXiv:2312.13493 [math.QA], 2023.
- Podleś, P., Woronowicz, S.L., 10.1007/BF02473358, Comm. Math. Phys. 130 (2) (1990), 381–431. (1990) MR1059324DOI10.1007/BF02473358
- Sklyanin, E.K., On an algebra generated by quadratic relations, Uspekhi Mat. Nauk 40 (1985), 214. (1985)
- Van Daele, A., 10.1090/S0002-9947-1994-1220906-5, Trans. Amer. Math. Soc. 342 (2) (1994), 917–932. (1994) MR1220906DOI10.1090/S0002-9947-1994-1220906-5
- Van Daele, A., 10.1006/aima.1998.1775, Adv. Math. 140 (2) (1998), 323–366. (1998) MR1658585DOI10.1006/aima.1998.1775
- Varadarajan, V.S., Lie groups, Lie algebras, and their representations, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1974. (1974) MR0376938
- Voigt, Ch., Yuncken, R., The plancherel formula for complex semisimple quantum groups, Ann. Sci. Éc. Norm. Sup. (to appear), https://arxiv.org/abs/1906.02672, 2019. MR4637134
- Voigt, Ch., Yuncken, R., 10.4171/dm/495, Doc. Math. 20 (2015), 433–490. (2015) MR3398718DOI10.4171/dm/495
- Voigt, Ch., Yuncken, R., Complex semisimple quantum groups and representation theory, Lect. Notes in Math., Springer, Cham, 2020. (2020) MR4162277
- Woronowicz, S.L., 10.1007/BF01219077, Comm. Math. Phys. 111 (4) (1987), 613–665. (1987) MR0901157DOI10.1007/BF01219077
- Woronowicz, S.L., 10.2977/prims/1195176848, Publ. Res. Inst. Math. Sci. 23 (1) (1987), 117–181. (1987) MR0890482DOI10.2977/prims/1195176848
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.