Characterizations of incidence modules
Naseer Ullah; Hailou Yao; Qianqian Yuan; Muhammad Azam
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 4, page 1127-1144
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topUllah, Naseer, et al. "Characterizations of incidence modules." Czechoslovak Mathematical Journal 74.4 (2024): 1127-1144. <http://eudml.org/doc/299629>.
@article{Ullah2024,
abstract = {Let $R$ be an associative ring and $M$ be a left $R$-module. We introduce the concept of the incidence module $I(X, M)$ of a locally finite partially ordered set $X$ over $M$. We study the properties of $I(X, M)$ and give the necessary and sufficient conditions for the incidence module to be an IN-module, -module, nil injective module and nonsingular module, respectively. Furthermore, we show that the class of -modules is closed under direct product and upper triangular matrix modules.},
author = {Ullah, Naseer, Yao, Hailou, Yuan, Qianqian, Azam, Muhammad},
journal = {Czechoslovak Mathematical Journal},
keywords = {Ikeda Nakayama module; essential Ikeda Nakayama module; nil injective; nonsingular},
language = {eng},
number = {4},
pages = {1127-1144},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Characterizations of incidence modules},
url = {http://eudml.org/doc/299629},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Ullah, Naseer
AU - Yao, Hailou
AU - Yuan, Qianqian
AU - Azam, Muhammad
TI - Characterizations of incidence modules
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 4
SP - 1127
EP - 1144
AB - Let $R$ be an associative ring and $M$ be a left $R$-module. We introduce the concept of the incidence module $I(X, M)$ of a locally finite partially ordered set $X$ over $M$. We study the properties of $I(X, M)$ and give the necessary and sufficient conditions for the incidence module to be an IN-module, -module, nil injective module and nonsingular module, respectively. Furthermore, we show that the class of -modules is closed under direct product and upper triangular matrix modules.
LA - eng
KW - Ikeda Nakayama module; essential Ikeda Nakayama module; nil injective; nonsingular
UR - http://eudml.org/doc/299629
ER -
References
top- Agnarsson, G., Amitsur, S. A., Robson, J. C., 10.1007/BF02785529, Isr. J. Math. 96 (1996), 1-13. (1996) Zbl0878.16015MR1432722DOI10.1007/BF02785529
- Ahmed, F. A., Abdul-Jabbar, A. M., 10.1063/5.0104696, AIP Conf. Proc. 2554 (2023), Article ID 020012. (2023) DOI10.1063/5.0104696
- Al-Thukair, F., Singh, S., Zaguia, I., 10.1007/s00013-003-4590-7, Arch. Math. 80 (2003), 358-362. (2003) Zbl1044.16025MR1982835DOI10.1007/s00013-003-4590-7
- Camillo, V., Nicholson, W. K., Yousif, M. F., 10.1006/jabr.1999.8217, J. Algebra 226 (2000), 1001-1010. (2000) Zbl0958.16002MR1752773DOI10.1006/jabr.1999.8217
- Derakhshan, M., Sahebi, S., Javadi, H. H. S., 10.1007/s12215-021-00610-0, Rend. Circ. Mat. Palermo (2) 71 (2022), 145-151. (2022) Zbl1496.16003MR4397978DOI10.1007/s12215-021-00610-0
- Doubilet, P., Rota, G.-C., Stanley, R., On the foundations of combinatorial theory. VI. The idea of generating function, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability. Volume II. Probability Theory University of California Press, Berkeley (1972), 267-318. (1972) Zbl0267.05002MR0403987
- Esin, S., Kanuni, M., Koç, A., 10.1080/00927872.2010.512589, Commun. Algebra 39 (2011), 3836-3848. (2011) Zbl1263.16030MR2845605DOI10.1080/00927872.2010.512589
- Ikeda, M., Nakayama, T., 10.1090/S0002-9939-1954-0060489-9, Proc. Am. Math. Soc. 5 (1954), 15-19. (1954) Zbl0055.02602MR0060489DOI10.1090/S0002-9939-1954-0060489-9
- Rota, G.-C., 10.1007/BF00531932, Z. Wahrscheinlichkeitstheor. Verw. Geb. 2 (1964), 340-368. (1964) Zbl0121.02406MR0174487DOI10.1007/BF00531932
- Spiegel, E., O'Donnell, C. J., Incidence Algebra, Pure and Applied Mathematics, Marcel Dekker 206. Marcel Dekker, New York (1997). (1997) Zbl0871.16001MR1445562
- Ssevviiri, D., Groenewald, N., 10.1080/00927872.2012.718822, Commun. Algebra 42 (2014), 571-577. (2014) Zbl1295.16011MR3169589DOI10.1080/00927872.2012.718822
- Stanley, R. P., 10.1007/978-1-4615-9763-6, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey (1986). (1986) Zbl0608.05001MR0847717DOI10.1007/978-1-4615-9763-6
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.