Existence, uniqueness and continuity results of weak solutions for nonlocal nonlinear parabolic problems

Tayeb Benhamoud; Elmehdi Zaouche; Mahmoud Bousselsal

Mathematica Bohemica (2024)

  • Volume: 149, Issue: 4, page 533-548
  • ISSN: 0862-7959

Abstract

top
This paper is concerned with the study of a nonlocal nonlinear parabolic problem associated with the equation u t - M ( Ω φ u d x ) div ( A ( x , t , u ) u ) = g ( x , t , u ) in Ω × ( 0 , T ) , where Ω is a bounded domain of n ( n 1 ) , T > 0 is a positive number, A ( x , t , u ) is an n × n matrix of variable coefficients depending on u and M : , φ : Ω , g : Ω × ( 0 , T ) × are given functions. We consider two different assumptions on g . The existence of a weak solution for this problem is proved using the Schauder fixed point theorem for each of these assumptions. Moreover, if A ( x , t , u ) = a ( x , t ) depends only on the variable ( x , t ) , we investigate two uniqueness theorems and give a continuity result depending on the initial data.

How to cite

top

Benhamoud, Tayeb, Zaouche, Elmehdi, and Bousselsal, Mahmoud. "Existence, uniqueness and continuity results of weak solutions for nonlocal nonlinear parabolic problems." Mathematica Bohemica 149.4 (2024): 533-548. <http://eudml.org/doc/299643>.

@article{Benhamoud2024,
abstract = {This paper is concerned with the study of a nonlocal nonlinear parabolic problem associated with the equation $u_t-M(\int _\{\Omega \}\phi u \{\rm d\}x)\{\rm div\} (A(x,t,u)\nabla u)=g(x,t,u)$ in $\Omega \times (0,T)$, where $\Omega $ is a bounded domain of $\mathbb \{R\}^\{n\}$$(n\ge 1)$, $T>0$ is a positive number, $A(x,t,u)$ is an $n\times n$ matrix of variable coefficients depending on $u$ and $M\colon \mathbb \{R\}\rightarrow \mathbb \{R\}$, $\phi \colon \Omega \rightarrow \mathbb \{R\}$, $g\colon \Omega \times (0,T)\times \mathbb \{R\}\rightarrow \mathbb \{R\}$ are given functions. We consider two different assumptions on $g$. The existence of a weak solution for this problem is proved using the Schauder fixed point theorem for each of these assumptions. Moreover, if $A(x,t,u)=a(x,t)$ depends only on the variable $(x,t)$, we investigate two uniqueness theorems and give a continuity result depending on the initial data.},
author = {Benhamoud, Tayeb, Zaouche, Elmehdi, Bousselsal, Mahmoud},
journal = {Mathematica Bohemica},
keywords = {nonlocal nonlinear parabolic problem; Schauder fixed point theorem; weak solution; existence; uniqueness},
language = {eng},
number = {4},
pages = {533-548},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence, uniqueness and continuity results of weak solutions for nonlocal nonlinear parabolic problems},
url = {http://eudml.org/doc/299643},
volume = {149},
year = {2024},
}

TY - JOUR
AU - Benhamoud, Tayeb
AU - Zaouche, Elmehdi
AU - Bousselsal, Mahmoud
TI - Existence, uniqueness and continuity results of weak solutions for nonlocal nonlinear parabolic problems
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 4
SP - 533
EP - 548
AB - This paper is concerned with the study of a nonlocal nonlinear parabolic problem associated with the equation $u_t-M(\int _{\Omega }\phi u {\rm d}x){\rm div} (A(x,t,u)\nabla u)=g(x,t,u)$ in $\Omega \times (0,T)$, where $\Omega $ is a bounded domain of $\mathbb {R}^{n}$$(n\ge 1)$, $T>0$ is a positive number, $A(x,t,u)$ is an $n\times n$ matrix of variable coefficients depending on $u$ and $M\colon \mathbb {R}\rightarrow \mathbb {R}$, $\phi \colon \Omega \rightarrow \mathbb {R}$, $g\colon \Omega \times (0,T)\times \mathbb {R}\rightarrow \mathbb {R}$ are given functions. We consider two different assumptions on $g$. The existence of a weak solution for this problem is proved using the Schauder fixed point theorem for each of these assumptions. Moreover, if $A(x,t,u)=a(x,t)$ depends only on the variable $(x,t)$, we investigate two uniqueness theorems and give a continuity result depending on the initial data.
LA - eng
KW - nonlocal nonlinear parabolic problem; Schauder fixed point theorem; weak solution; existence; uniqueness
UR - http://eudml.org/doc/299643
ER -

References

top
  1. Alves, C. O., Boudjeriou, T., 10.1007/s12215-021-00644-4, Rend. Circ. Mat., Palermo (2) 71 (2022), 611-632. (2022) Zbl1497.35209MR4453341DOI10.1007/s12215-021-00644-4
  2. Alves, C. O., Covei, D.-P., 10.1016/j.nonrwa.2014.11.003, Nonlinear Anal., Real World Appl. 23 (2015), 1-8. (2015) Zbl1319.35057MR3316619DOI10.1016/j.nonrwa.2014.11.003
  3. Anh, C. T., Tinh, L. T., Toi, V. M., 10.4134/JKMS.j170233, J. Korean Math. Soc. 55 (2018), 531-551. (2018) Zbl1415.35055MR3800554DOI10.4134/JKMS.j170233
  4. Arcoya, D., Leonori, T., Primo, A., 10.1007/s10440-012-9792-1, Acta Appl. Math. 127 (2013), 87-104. (2013) Zbl1280.35050MR3101144DOI10.1007/s10440-012-9792-1
  5. Bousselsal, M., Zaouche, E., 10.1007/s00009-020-01564-w, Mediterr. J. Math. 17 (2020), Article ID 129, 10 pages. (2020) Zbl1448.35185MR4122738DOI10.1007/s00009-020-01564-w
  6. Chipot, M., 10.1007/978-3-0348-8428-0, Birkhäuser Advanced Texts. Birkhäuser, Basel (2000). (2000) Zbl0964.35002MR1801735DOI10.1007/978-3-0348-8428-0
  7. Chipot, M., Lovat, B., 10.1016/S0362-546X(97)00169-7, Nonlinear Anal., Theory Methods Appl. 30 (1997), 4619-4627. (1997) Zbl0894.35119MR1603446DOI10.1016/S0362-546X(97)00169-7
  8. Chipot, M., Lovat, B., 10.1023/A:1009706118910, Positivity 3 (1999), 65-81. (1999) Zbl0921.35071MR1675465DOI10.1023/A:1009706118910
  9. Chipot, M., Lovat, B., Existence and uniqueness results for a class of nonlocal elliptic and parabolic problems, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 8 (2001), 35-51. (2001) Zbl0984.35066MR1820664
  10. Chipot, M., Molinet, L., 10.1080/00036810108840994, Appl. Anal. 80 (2001), 279-315. (2001) Zbl1023.35016MR1914683DOI10.1080/00036810108840994
  11. Corrêa, F. J. S. A., 10.1016/j.na.2004.08.010, Nonlinear Anal., Theory Methods Appl., Ser. A 59 (2004), 1147-1155. (2004) Zbl1133.35043MR2098510DOI10.1016/j.na.2004.08.010
  12. Dautray, R., Lions, J.-L., Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 5. Evolution Problems I, Springer, Berlin (1992). (1992) Zbl0755.35001MR1156075
  13. Menezes, S. B. de, 10.1155/IJMMS/2006/82654, Int. J. Math. Math. Sci. 2006 (2006), Article ID 82654, 10 pages. (2006) Zbl1136.35407MR2172802DOI10.1155/IJMMS/2006/82654
  14. Hale, J. K., Lunel, S. M. Verduyn, 10.1007/978-1-4612-4342-7, Applied Mathematical Sciences 99. Springer, New York (1993). (1993) Zbl0787.34002MR1243878DOI10.1007/978-1-4612-4342-7
  15. Jiang, R., Zhai, C., 10.12775/TMNA.2017.036, Topol. Methods Nonlinear Anal. 50 (2017), 669-682. (2017) Zbl1387.35240MR3747033DOI10.12775/TMNA.2017.036
  16. Jin, F., Yan, B., 10.3934/math.2021313, AIMS Math. 6 (2021), 5292-5315. (2021) Zbl1484.35263MR4236733DOI10.3934/math.2021313
  17. Lovat, B., Études de quelques problèmes paraboliques non locaux: Thèse, Université de Metz, Metz (1995), French Available at https://hal.univ-lorraine.fr/tel-01777092. (1995) 
  18. Yan, B., Wang, D., 10.1016/j.jmaa.2016.04.023, J. Math. Anal. Appl. 442 (2016), 72-102. (2016) Zbl1344.35043MR3498319DOI10.1016/j.jmaa.2016.04.023
  19. Zaouche, E., 10.1080/00036811.2020.1778674, Appl. Anal. 101 (2022), 1261-1270. (2022) Zbl1489.35091MR4408272DOI10.1080/00036811.2020.1778674
  20. Zaouche, E., 10.1007/s11587-021-00612-1, Ric. Mat. 72 (2023), 949-960. (2023) Zbl1525.35125MR4649474DOI10.1007/s11587-021-00612-1

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.