Existence, uniqueness and continuity results of weak solutions for nonlocal nonlinear parabolic problems
Tayeb Benhamoud; Elmehdi Zaouche; Mahmoud Bousselsal
Mathematica Bohemica (2024)
- Volume: 149, Issue: 4, page 533-548
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topBenhamoud, Tayeb, Zaouche, Elmehdi, and Bousselsal, Mahmoud. "Existence, uniqueness and continuity results of weak solutions for nonlocal nonlinear parabolic problems." Mathematica Bohemica 149.4 (2024): 533-548. <http://eudml.org/doc/299643>.
@article{Benhamoud2024,
abstract = {This paper is concerned with the study of a nonlocal nonlinear parabolic problem associated with the equation $u_t-M(\int _\{\Omega \}\phi u \{\rm d\}x)\{\rm div\} (A(x,t,u)\nabla u)=g(x,t,u)$ in $\Omega \times (0,T)$, where $\Omega $ is a bounded domain of $\mathbb \{R\}^\{n\}$$(n\ge 1)$, $T>0$ is a positive number, $A(x,t,u)$ is an $n\times n$ matrix of variable coefficients depending on $u$ and $M\colon \mathbb \{R\}\rightarrow \mathbb \{R\}$, $\phi \colon \Omega \rightarrow \mathbb \{R\}$, $g\colon \Omega \times (0,T)\times \mathbb \{R\}\rightarrow \mathbb \{R\}$ are given functions. We consider two different assumptions on $g$. The existence of a weak solution for this problem is proved using the Schauder fixed point theorem for each of these assumptions. Moreover, if $A(x,t,u)=a(x,t)$ depends only on the variable $(x,t)$, we investigate two uniqueness theorems and give a continuity result depending on the initial data.},
author = {Benhamoud, Tayeb, Zaouche, Elmehdi, Bousselsal, Mahmoud},
journal = {Mathematica Bohemica},
keywords = {nonlocal nonlinear parabolic problem; Schauder fixed point theorem; weak solution; existence; uniqueness},
language = {eng},
number = {4},
pages = {533-548},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence, uniqueness and continuity results of weak solutions for nonlocal nonlinear parabolic problems},
url = {http://eudml.org/doc/299643},
volume = {149},
year = {2024},
}
TY - JOUR
AU - Benhamoud, Tayeb
AU - Zaouche, Elmehdi
AU - Bousselsal, Mahmoud
TI - Existence, uniqueness and continuity results of weak solutions for nonlocal nonlinear parabolic problems
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 4
SP - 533
EP - 548
AB - This paper is concerned with the study of a nonlocal nonlinear parabolic problem associated with the equation $u_t-M(\int _{\Omega }\phi u {\rm d}x){\rm div} (A(x,t,u)\nabla u)=g(x,t,u)$ in $\Omega \times (0,T)$, where $\Omega $ is a bounded domain of $\mathbb {R}^{n}$$(n\ge 1)$, $T>0$ is a positive number, $A(x,t,u)$ is an $n\times n$ matrix of variable coefficients depending on $u$ and $M\colon \mathbb {R}\rightarrow \mathbb {R}$, $\phi \colon \Omega \rightarrow \mathbb {R}$, $g\colon \Omega \times (0,T)\times \mathbb {R}\rightarrow \mathbb {R}$ are given functions. We consider two different assumptions on $g$. The existence of a weak solution for this problem is proved using the Schauder fixed point theorem for each of these assumptions. Moreover, if $A(x,t,u)=a(x,t)$ depends only on the variable $(x,t)$, we investigate two uniqueness theorems and give a continuity result depending on the initial data.
LA - eng
KW - nonlocal nonlinear parabolic problem; Schauder fixed point theorem; weak solution; existence; uniqueness
UR - http://eudml.org/doc/299643
ER -
References
top- Alves, C. O., Boudjeriou, T., 10.1007/s12215-021-00644-4, Rend. Circ. Mat., Palermo (2) 71 (2022), 611-632. (2022) Zbl1497.35209MR4453341DOI10.1007/s12215-021-00644-4
- Alves, C. O., Covei, D.-P., 10.1016/j.nonrwa.2014.11.003, Nonlinear Anal., Real World Appl. 23 (2015), 1-8. (2015) Zbl1319.35057MR3316619DOI10.1016/j.nonrwa.2014.11.003
- Anh, C. T., Tinh, L. T., Toi, V. M., 10.4134/JKMS.j170233, J. Korean Math. Soc. 55 (2018), 531-551. (2018) Zbl1415.35055MR3800554DOI10.4134/JKMS.j170233
- Arcoya, D., Leonori, T., Primo, A., 10.1007/s10440-012-9792-1, Acta Appl. Math. 127 (2013), 87-104. (2013) Zbl1280.35050MR3101144DOI10.1007/s10440-012-9792-1
- Bousselsal, M., Zaouche, E., 10.1007/s00009-020-01564-w, Mediterr. J. Math. 17 (2020), Article ID 129, 10 pages. (2020) Zbl1448.35185MR4122738DOI10.1007/s00009-020-01564-w
- Chipot, M., 10.1007/978-3-0348-8428-0, Birkhäuser Advanced Texts. Birkhäuser, Basel (2000). (2000) Zbl0964.35002MR1801735DOI10.1007/978-3-0348-8428-0
- Chipot, M., Lovat, B., 10.1016/S0362-546X(97)00169-7, Nonlinear Anal., Theory Methods Appl. 30 (1997), 4619-4627. (1997) Zbl0894.35119MR1603446DOI10.1016/S0362-546X(97)00169-7
- Chipot, M., Lovat, B., 10.1023/A:1009706118910, Positivity 3 (1999), 65-81. (1999) Zbl0921.35071MR1675465DOI10.1023/A:1009706118910
- Chipot, M., Lovat, B., Existence and uniqueness results for a class of nonlocal elliptic and parabolic problems, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 8 (2001), 35-51. (2001) Zbl0984.35066MR1820664
- Chipot, M., Molinet, L., 10.1080/00036810108840994, Appl. Anal. 80 (2001), 279-315. (2001) Zbl1023.35016MR1914683DOI10.1080/00036810108840994
- Corrêa, F. J. S. A., 10.1016/j.na.2004.08.010, Nonlinear Anal., Theory Methods Appl., Ser. A 59 (2004), 1147-1155. (2004) Zbl1133.35043MR2098510DOI10.1016/j.na.2004.08.010
- Dautray, R., Lions, J.-L., Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 5. Evolution Problems I, Springer, Berlin (1992). (1992) Zbl0755.35001MR1156075
- Menezes, S. B. de, 10.1155/IJMMS/2006/82654, Int. J. Math. Math. Sci. 2006 (2006), Article ID 82654, 10 pages. (2006) Zbl1136.35407MR2172802DOI10.1155/IJMMS/2006/82654
- Hale, J. K., Lunel, S. M. Verduyn, 10.1007/978-1-4612-4342-7, Applied Mathematical Sciences 99. Springer, New York (1993). (1993) Zbl0787.34002MR1243878DOI10.1007/978-1-4612-4342-7
- Jiang, R., Zhai, C., 10.12775/TMNA.2017.036, Topol. Methods Nonlinear Anal. 50 (2017), 669-682. (2017) Zbl1387.35240MR3747033DOI10.12775/TMNA.2017.036
- Jin, F., Yan, B., 10.3934/math.2021313, AIMS Math. 6 (2021), 5292-5315. (2021) Zbl1484.35263MR4236733DOI10.3934/math.2021313
- Lovat, B., Études de quelques problèmes paraboliques non locaux: Thèse, Université de Metz, Metz (1995), French Available at https://hal.univ-lorraine.fr/tel-01777092. (1995)
- Yan, B., Wang, D., 10.1016/j.jmaa.2016.04.023, J. Math. Anal. Appl. 442 (2016), 72-102. (2016) Zbl1344.35043MR3498319DOI10.1016/j.jmaa.2016.04.023
- Zaouche, E., 10.1080/00036811.2020.1778674, Appl. Anal. 101 (2022), 1261-1270. (2022) Zbl1489.35091MR4408272DOI10.1080/00036811.2020.1778674
- Zaouche, E., 10.1007/s11587-021-00612-1, Ric. Mat. 72 (2023), 949-960. (2023) Zbl1525.35125MR4649474DOI10.1007/s11587-021-00612-1
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.