A property which ensures that a finitely generated hyper-(Abelian-by-finite) group is finite-by-nilpotent
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 4, page 975-982
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGherbi, Fares, and Trabelsi, Nadir. "A property which ensures that a finitely generated hyper-(Abelian-by-finite) group is finite-by-nilpotent." Czechoslovak Mathematical Journal 74.4 (2024): 975-982. <http://eudml.org/doc/299644>.
@article{Gherbi2024,
abstract = {Let $\mathfrak \{M\}$ be the class of groups satisfying the minimal condition on normal subgroups and let $\Omega $ be the class of groups of finite lower central depth, that is groups $G$ such that $\gamma _\{i\}(G)=\gamma _\{i+1\}(G)$ for some positive integer $i$. The main result states that if $G$ is a finitely generated hyper-(Abelian-by-finite) group such that for every $x\in G$, there exists a normal subgroup $H_\{x\}$ of finite index in $G$ satisfying $\langle x,x^\{h\}\rangle \in \mathfrak \{M\}\Omega $ for every $h\in H_\{x\}$, then $G$ is finite-by-nilpotent. As a consequence of this result, we prove that a finitely generated hyper-(Abelian-by-finite) group $G$ such that for every $x\in G$, there exists a normal subgroup $H_\{x\}$ of finite index in $G$ satisfying $\langle x,x^\{h\}\rangle \in \mathfrak \{T\}\Omega $ for every $h\in H_\{x\}$, is periodic-by-nilpotent; where $\mathfrak \{T\}$ stands for the class of periodic groups.},
author = {Gherbi, Fares, Trabelsi, Nadir},
journal = {Czechoslovak Mathematical Journal},
keywords = {nilpotent; periodic; finite lower central depth; hyper-(Abelian-by-finite); minimal condition on normal subgroups},
language = {eng},
number = {4},
pages = {975-982},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A property which ensures that a finitely generated hyper-(Abelian-by-finite) group is finite-by-nilpotent},
url = {http://eudml.org/doc/299644},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Gherbi, Fares
AU - Trabelsi, Nadir
TI - A property which ensures that a finitely generated hyper-(Abelian-by-finite) group is finite-by-nilpotent
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 4
SP - 975
EP - 982
AB - Let $\mathfrak {M}$ be the class of groups satisfying the minimal condition on normal subgroups and let $\Omega $ be the class of groups of finite lower central depth, that is groups $G$ such that $\gamma _{i}(G)=\gamma _{i+1}(G)$ for some positive integer $i$. The main result states that if $G$ is a finitely generated hyper-(Abelian-by-finite) group such that for every $x\in G$, there exists a normal subgroup $H_{x}$ of finite index in $G$ satisfying $\langle x,x^{h}\rangle \in \mathfrak {M}\Omega $ for every $h\in H_{x}$, then $G$ is finite-by-nilpotent. As a consequence of this result, we prove that a finitely generated hyper-(Abelian-by-finite) group $G$ such that for every $x\in G$, there exists a normal subgroup $H_{x}$ of finite index in $G$ satisfying $\langle x,x^{h}\rangle \in \mathfrak {T}\Omega $ for every $h\in H_{x}$, is periodic-by-nilpotent; where $\mathfrak {T}$ stands for the class of periodic groups.
LA - eng
KW - nilpotent; periodic; finite lower central depth; hyper-(Abelian-by-finite); minimal condition on normal subgroups
UR - http://eudml.org/doc/299644
ER -
References
top- Brookes, C. J. B., 10.1112/blms/18.1.7, Bull. Lond. Math. Soc. 18 (1986), 7-10. (1986) Zbl0556.20028MR841360DOI10.1112/blms/18.1.7
- Falco, M. De, Giovanni, F. De, Musella, C., Trabelsi, N., 10.1017/S1446788717000416, J. Aust. Math. Soc. 105 (2018), 24-33. (2018) Zbl1498.20080MR3820253DOI10.1017/S1446788717000416
- Gherbi, F., Trabelsi, N., 10.4134/BKMS.b180247, Bull. Korean Math. Soc. 56 (2019), 365-371. (2019) Zbl1512.20108MR3936471DOI10.4134/BKMS.b180247
- Gherbi, F., Trabelsi, N., 10.32037/agta-2021-010, Adv. Group Theory Appl. 12 (2021), 35-45. (2021) Zbl1495.20040MR4353905DOI10.32037/agta-2021-010
- Gherbi, F., Trabelsi, N., 10.55730/1300-0098.3131, Turk. J. Math. 46 (2022), 912-918. (2022) Zbl1509.20054MR4406735DOI10.55730/1300-0098.3131
- Golod, E. S., 10.1090/trans2/084, Twelve Papers on Algebra, Algebraic Geometry and Topology American Mathematical Society Translations: Series 2, Vol. 84. AMS, Providence (1969), 83-88. (1969) Zbl0206.32402MR0238880DOI10.1090/trans2/084
- Hammoudi, L., 10.1142/S0218196704001694, Int. J. Algebra Comput. 14 (2004), 197-211. (2004) Zbl1087.16013MR2058320DOI10.1142/S0218196704001694
- Lennox, J. C., 10.1112/blms/7.3.273, Bull. Lond. Math. Soc. 7 (1975), 273-278. (1975) Zbl0314.20029MR382448DOI10.1112/blms/7.3.273
- Lennox, J. C., 10.1017/S0017089500003554, Glasg. Math. J. 19 (1978), 153-154. (1978) Zbl0394.20027MR486159DOI10.1017/S0017089500003554
- Robinson, D. J. S., 10.1007/978-3-662-07241-7, Ergebnisse der Mathematik und ihrer Grenzgebiete 62. Springer, New York (1972). (1972) Zbl0243.20032MR0332989DOI10.1007/978-3-662-07241-7
- Robinson, D. J. S., 10.1007/978-3-662-11747-7, Ergebnisse der Mathematik und ihrer Grenzgebiete 63. Springer, New York (1972). (1972) Zbl0243.20033MR0332990DOI10.1007/978-3-662-11747-7
- Robinson, D. J. S., 10.1007/978-1-4419-8594-1, Graduate Texts in Mathematics 80. Springer, New York (1996). (1996) Zbl0836.20001MR1357169DOI10.1007/978-1-4419-8594-1
- Segal, D., 10.1016/0021-8693(74)90147-1, J. Algebra 32 (1974), 389-399. (1974) Zbl0293.20029MR419612DOI10.1016/0021-8693(74)90147-1
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.