Displaying similar documents to “A property which ensures that a finitely generated hyper-(Abelian-by-finite) group is finite-by-nilpotent”

A note on infinite a S -groups

Reza Nikandish, Babak Miraftab (2015)

Czechoslovak Mathematical Journal

Similarity:

Let G be a group. If every nontrivial subgroup of G has a proper supplement, then G is called an a S -group. We study some properties of a S -groups. For instance, it is shown that a nilpotent group G is an a S -group if and only if G is a subdirect product of cyclic groups of prime orders. We prove that if G is an a S -group which satisfies the descending chain condition on subgroups, then G is finite. Among other results, we characterize all abelian groups for which every nontrivial quotient group...

The p -nilpotency of finite groups with some weakly pronormal subgroups

Jianjun Liu, Jian Chang, Guiyun Chen (2020)

Czechoslovak Mathematical Journal

Similarity:

For a finite group G and a fixed Sylow p -subgroup P of G , Ballester-Bolinches and Guo proved in 2000 that G is p -nilpotent if every element of P G ' with order p lies in the center of N G ( P ) and when p = 2 , either every element of P G ' with order 4 lies in the center of N G ( P ) or P is quaternion-free and N G ( P ) is 2 -nilpotent. Asaad introduced weakly pronormal subgroup of G in 2014 and proved that G is p -nilpotent if every element of P with order p is weakly pronormal in G and when p = 2 , every element of P with...

On a generalization of a theorem of Burnside

Jiangtao Shi (2015)

Czechoslovak Mathematical Journal

Similarity:

A theorem of Burnside asserts that a finite group G is p -nilpotent if for some prime p a Sylow p -subgroup of G lies in the center of its normalizer. In this paper, let G be a finite group and p the smallest prime divisor of | G | , the order of G . Let P Syl p ( G ) . As a generalization of Burnside’s theorem, it is shown that if every non-cyclic p -subgroup of G is self-normalizing or normal in G then G is solvable. In particular, if P a , b | a p n - 1 = 1 , b 2 = 1 , b - 1 a b = a 1 + p n - 2 , where n 3 for p > 2 and n 4 for p = 2 , then G is p -nilpotent or p -closed. ...

On the derived length of units in group algebra

Dishari Chaudhuri, Anupam Saikia (2017)

Czechoslovak Mathematical Journal

Similarity:

Let G be a finite group G , K a field of characteristic p 17 and let U be the group of units in K G . We show that if the derived length of U does not exceed 4 , then G must be abelian.

Finite p -nilpotent groups with some subgroups weakly -supplemented

Liushuan Dong (2020)

Czechoslovak Mathematical Journal

Similarity:

Suppose that G is a finite group and H is a subgroup of G . Subgroup H is said to be weakly -supplemented in G if there exists a subgroup B of G such that (1) G = H B , and (2) if H 1 / H G is a maximal subgroup of H / H G , then H 1 B = B H 1 < G , where H G is the largest normal subgroup of G contained in H . We fix in every noncyclic Sylow subgroup P of G a subgroup D satisfying 1 < | D | < | P | and study the p -nilpotency of G under the assumption that every subgroup H of P with | H | = | D | is weakly -supplemented in G . Some recent results are generalized. ...

On σ -permutably embedded subgroups of finite groups

Chenchen Cao, Li Zhang, Wenbin Guo (2019)

Czechoslovak Mathematical Journal

Similarity:

Let σ = { σ i : i I } be some partition of the set of all primes , G be a finite group and σ ( G ) = { σ i : σ i π ( G ) } . A set of subgroups of G is said to be a complete Hall σ -set of G if every non-identity member of is a Hall σ i -subgroup of G and contains exactly one Hall σ i -subgroup of G for every σ i σ ( G ) . G is said to be σ -full if G possesses a complete Hall σ -set. A subgroup H of G is σ -permutable in G if G possesses a complete Hall σ -set such that H A x = A x H for all A and all x G . A subgroup H of G is σ -permutably embedded in...

𝒟 n , r is not potentially nilpotent for n 4 r - 2

Yan Ling Shao, Yubin Gao, Wei Gao (2016)

Czechoslovak Mathematical Journal

Similarity:

An n × n sign pattern 𝒜 is said to be potentially nilpotent if there exists a nilpotent real matrix B with the same sign pattern as 𝒜 . Let 𝒟 n , r be an n × n sign pattern with 2 r n such that the superdiagonal and the ( n , n ) entries are positive, the ( i , 1 ) ( i = 1 , , r ) and ( i , i - r + 1 ) ( i = r + 1 , , n ) entries are negative, and zeros elsewhere. We prove that for r 3 and n 4 r - 2 , the sign pattern 𝒟 n , r is not potentially nilpotent, and so not spectrally arbitrary.

Finite groups whose all proper subgroups are 𝒞 -groups

Pengfei Guo, Jianjun Liu (2018)

Czechoslovak Mathematical Journal

Similarity:

A group G is said to be a 𝒞 -group if for every divisor d of the order of G , there exists a subgroup H of G of order d such that H is normal or abnormal in G . We give a complete classification of those groups which are not 𝒞 -groups but all of whose proper subgroups are 𝒞 -groups.

The Ribes-Zalesskii property of some one relator groups

Gilbert Mantika, Narcisse Temate-Tangang, Daniel Tieudjo (2022)

Archivum Mathematicum

Similarity:

The profinite topology on any abstract group G , is one such that the fundamental system of neighborhoods of the identity is given by all its subgroups of finite index. We say that a group G has the Ribes-Zalesskii property of rank k , or is RZ k with k a natural number, if any product H 1 H 2 H k of finitely generated subgroups H 1 , H 2 , , H k is closed in the profinite topology on G . And a group is said to have the Ribes-Zalesskii property or is RZ if it is RZ k for any natural number k . In this paper we characterize...