The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A property which ensures that a finitely generated hyper-(Abelian-by-finite) group is finite-by-nilpotent”

A note on infinite a S -groups

Reza Nikandish, Babak Miraftab (2015)

Czechoslovak Mathematical Journal

Similarity:

Let G be a group. If every nontrivial subgroup of G has a proper supplement, then G is called an a S -group. We study some properties of a S -groups. For instance, it is shown that a nilpotent group G is an a S -group if and only if G is a subdirect product of cyclic groups of prime orders. We prove that if G is an a S -group which satisfies the descending chain condition on subgroups, then G is finite. Among other results, we characterize all abelian groups for which every nontrivial quotient group...

The p -nilpotency of finite groups with some weakly pronormal subgroups

Jianjun Liu, Jian Chang, Guiyun Chen (2020)

Czechoslovak Mathematical Journal

Similarity:

For a finite group G and a fixed Sylow p -subgroup P of G , Ballester-Bolinches and Guo proved in 2000 that G is p -nilpotent if every element of P G ' with order p lies in the center of N G ( P ) and when p = 2 , either every element of P G ' with order 4 lies in the center of N G ( P ) or P is quaternion-free and N G ( P ) is 2 -nilpotent. Asaad introduced weakly pronormal subgroup of G in 2014 and proved that G is p -nilpotent if every element of P with order p is weakly pronormal in G and when p = 2 , every element of P with...

On a generalization of a theorem of Burnside

Jiangtao Shi (2015)

Czechoslovak Mathematical Journal

Similarity:

A theorem of Burnside asserts that a finite group G is p -nilpotent if for some prime p a Sylow p -subgroup of G lies in the center of its normalizer. In this paper, let G be a finite group and p the smallest prime divisor of | G | , the order of G . Let P Syl p ( G ) . As a generalization of Burnside’s theorem, it is shown that if every non-cyclic p -subgroup of G is self-normalizing or normal in G then G is solvable. In particular, if P a , b | a p n - 1 = 1 , b 2 = 1 , b - 1 a b = a 1 + p n - 2 , where n 3 for p > 2 and n 4 for p = 2 , then G is p -nilpotent or p -closed. ...

On the derived length of units in group algebra

Dishari Chaudhuri, Anupam Saikia (2017)

Czechoslovak Mathematical Journal

Similarity:

Let G be a finite group G , K a field of characteristic p 17 and let U be the group of units in K G . We show that if the derived length of U does not exceed 4 , then G must be abelian.

Finite p -nilpotent groups with some subgroups weakly -supplemented

Liushuan Dong (2020)

Czechoslovak Mathematical Journal

Similarity:

Suppose that G is a finite group and H is a subgroup of G . Subgroup H is said to be weakly -supplemented in G if there exists a subgroup B of G such that (1) G = H B , and (2) if H 1 / H G is a maximal subgroup of H / H G , then H 1 B = B H 1 < G , where H G is the largest normal subgroup of G contained in H . We fix in every noncyclic Sylow subgroup P of G a subgroup D satisfying 1 < | D | < | P | and study the p -nilpotency of G under the assumption that every subgroup H of P with | H | = | D | is weakly -supplemented in G . Some recent results are generalized. ...

On σ -permutably embedded subgroups of finite groups

Chenchen Cao, Li Zhang, Wenbin Guo (2019)

Czechoslovak Mathematical Journal

Similarity:

Let σ = { σ i : i I } be some partition of the set of all primes , G be a finite group and σ ( G ) = { σ i : σ i π ( G ) } . A set of subgroups of G is said to be a complete Hall σ -set of G if every non-identity member of is a Hall σ i -subgroup of G and contains exactly one Hall σ i -subgroup of G for every σ i σ ( G ) . G is said to be σ -full if G possesses a complete Hall σ -set. A subgroup H of G is σ -permutable in G if G possesses a complete Hall σ -set such that H A x = A x H for all A and all x G . A subgroup H of G is σ -permutably embedded in...

𝒟 n , r is not potentially nilpotent for n 4 r - 2

Yan Ling Shao, Yubin Gao, Wei Gao (2016)

Czechoslovak Mathematical Journal

Similarity:

An n × n sign pattern 𝒜 is said to be potentially nilpotent if there exists a nilpotent real matrix B with the same sign pattern as 𝒜 . Let 𝒟 n , r be an n × n sign pattern with 2 r n such that the superdiagonal and the ( n , n ) entries are positive, the ( i , 1 ) ( i = 1 , , r ) and ( i , i - r + 1 ) ( i = r + 1 , , n ) entries are negative, and zeros elsewhere. We prove that for r 3 and n 4 r - 2 , the sign pattern 𝒟 n , r is not potentially nilpotent, and so not spectrally arbitrary.

Finite groups whose all proper subgroups are 𝒞 -groups

Pengfei Guo, Jianjun Liu (2018)

Czechoslovak Mathematical Journal

Similarity:

A group G is said to be a 𝒞 -group if for every divisor d of the order of G , there exists a subgroup H of G of order d such that H is normal or abnormal in G . We give a complete classification of those groups which are not 𝒞 -groups but all of whose proper subgroups are 𝒞 -groups.

The Ribes-Zalesskii property of some one relator groups

Gilbert Mantika, Narcisse Temate-Tangang, Daniel Tieudjo (2022)

Archivum Mathematicum

Similarity:

The profinite topology on any abstract group G , is one such that the fundamental system of neighborhoods of the identity is given by all its subgroups of finite index. We say that a group G has the Ribes-Zalesskii property of rank k , or is RZ k with k a natural number, if any product H 1 H 2 H k of finitely generated subgroups H 1 , H 2 , , H k is closed in the profinite topology on G . And a group is said to have the Ribes-Zalesskii property or is RZ if it is RZ k for any natural number k . In this paper we characterize...