Adjustment of the scaling parameter of Dai-Kou type conjugate gradient methods with application to motion control

Mahbube Akbari; Saeed Nezhadhosein; Aghile Heydari

Applications of Mathematics (2024)

  • Volume: 69, Issue: 6, page 829-845
  • ISSN: 0862-7940

Abstract

top
We introduce a new scaling parameter for the Dai-Kou family of conjugate gradient algorithms (2013), which is one of the most numerically efficient methods for unconstrained optimization. The suggested parameter is based on eigenvalue analysis of the search direction matrix and minimizing the measure function defined by Dennis and Wolkowicz (1993). The corresponding search direction of conjugate gradient method has the sufficient descent property and the extended conjugacy condition. The global convergence of the proposed algorithm is given for both uniformly convex and general nonlinear objective functions. Also, numerical experiments on a set of test functions of the CUTER collections and the practical problem of the manipulator of robot movement control show that the proposed method is effective.

How to cite

top

Akbari, Mahbube, Nezhadhosein, Saeed, and Heydari, Aghile. "Adjustment of the scaling parameter of Dai-Kou type conjugate gradient methods with application to motion control." Applications of Mathematics 69.6 (2024): 829-845. <http://eudml.org/doc/299649>.

@article{Akbari2024,
abstract = {We introduce a new scaling parameter for the Dai-Kou family of conjugate gradient algorithms (2013), which is one of the most numerically efficient methods for unconstrained optimization. The suggested parameter is based on eigenvalue analysis of the search direction matrix and minimizing the measure function defined by Dennis and Wolkowicz (1993). The corresponding search direction of conjugate gradient method has the sufficient descent property and the extended conjugacy condition. The global convergence of the proposed algorithm is given for both uniformly convex and general nonlinear objective functions. Also, numerical experiments on a set of test functions of the CUTER collections and the practical problem of the manipulator of robot movement control show that the proposed method is effective.},
author = {Akbari, Mahbube, Nezhadhosein, Saeed, Heydari, Aghile},
journal = {Applications of Mathematics},
keywords = {unconstrained optimization problem; self-scaling memoryless BFGS; conjugate gradient; measure function},
language = {eng},
number = {6},
pages = {829-845},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Adjustment of the scaling parameter of Dai-Kou type conjugate gradient methods with application to motion control},
url = {http://eudml.org/doc/299649},
volume = {69},
year = {2024},
}

TY - JOUR
AU - Akbari, Mahbube
AU - Nezhadhosein, Saeed
AU - Heydari, Aghile
TI - Adjustment of the scaling parameter of Dai-Kou type conjugate gradient methods with application to motion control
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 6
SP - 829
EP - 845
AB - We introduce a new scaling parameter for the Dai-Kou family of conjugate gradient algorithms (2013), which is one of the most numerically efficient methods for unconstrained optimization. The suggested parameter is based on eigenvalue analysis of the search direction matrix and minimizing the measure function defined by Dennis and Wolkowicz (1993). The corresponding search direction of conjugate gradient method has the sufficient descent property and the extended conjugacy condition. The global convergence of the proposed algorithm is given for both uniformly convex and general nonlinear objective functions. Also, numerical experiments on a set of test functions of the CUTER collections and the practical problem of the manipulator of robot movement control show that the proposed method is effective.
LA - eng
KW - unconstrained optimization problem; self-scaling memoryless BFGS; conjugate gradient; measure function
UR - http://eudml.org/doc/299649
ER -

References

top
  1. Abubakar, A. B., Kumam, P., Malik, M., Ibrahim, A. H., 10.1016/j.matcom.2021.05.038, Math. Comput. Simul. 201 (2022), 640-657. (2022) Zbl1540.90255MR4439403DOI10.1016/j.matcom.2021.05.038
  2. Aminifard, Z., Babaie-Kafaki, S., Ghafoori, S., 10.1016/j.apnum.2021.05.002, Appl. Numer. Math. 167 (2021), 187-201. (2021) Zbl1467.65060MR4258711DOI10.1016/j.apnum.2021.05.002
  3. Andrei, N., 10.1080/10556788.2016.1225211, Optim. Methods Softw. 32 (2017), 534-551. (2017) Zbl1368.49057MR3630455DOI10.1080/10556788.2016.1225211
  4. Andrei, N., 10.1007/s10092-020-00365-7, Calcolo 57 (2020), Article ID 17, 27 pages. (2020) Zbl1445.90100MR4102811DOI10.1007/s10092-020-00365-7
  5. Babaie-Kafaki, S., 10.1007/s10957-015-0724-x, J. Optim. Theory Appl. 167 (2015), 91-101. (2015) Zbl1327.90394MR3395207DOI10.1007/s10957-015-0724-x
  6. Byrd, R. H., Nocedal, J., 10.1137/0726042, SIAM J. Numer. Anal. 26 (1989), 727-739. (1989) Zbl0676.65061MR0997665DOI10.1137/0726042
  7. Dai, Y.-H., Kou, C.-X., 10.1137/100813026, SIAM J. Optim. 23 (2013), 296-320. (2013) Zbl1266.49065MR3033109DOI10.1137/100813026
  8. Bouter, M. L. de Leeuw den, Gijzen, M. B. van, Remis, R. F., 10.1007/978-3-030-55874-1_66, Numerical Mathematics and Advanced Applications: ENUMATH 2019 Lecture Notes in Computational Science and Engineering 139. Springer, Cham (2019), 673-681. (2019) Zbl1475.65038MR4266546DOI10.1007/978-3-030-55874-1_66
  9. J. E. Dennis, Jr., H. Wolkowicz, 10.1137/0730067, SIAM J. Numer. Anal. 30 (1993), 1291-1314. (1993) Zbl0802.65081MR1239822DOI10.1137/0730067
  10. Dolan, E. D., Moré, J. J., 10.1007/s101070100263, Math. Program. 91 (2002), 201-213. (2002) Zbl1049.90004MR1875515DOI10.1007/s101070100263
  11. Esmaeili, H., Shabani, S., Kimiaei, M., 10.1007/s10092-018-0296-x, Calcolo 56 (2019), Article ID 1, 38 pages. (2019) Zbl1461.65147MR3882971DOI10.1007/s10092-018-0296-x
  12. Gould, N. I. M., Orban, D., Toint, P. L., 10.1145/962437.96243, ACM Trans. Math. Softw. 29 (2003), 373-394. (2003) Zbl1068.90526DOI10.1145/962437.96243
  13. Hager, W. W., Zhang, H., 10.1145/1132973.1132979, ACM Trans. Math. Softw. 32 (2006), 113-137. (2006) Zbl1346.90816MR2272354DOI10.1145/1132973.1132979
  14. Kaporin, I. E., 10.1002/nla.1680010208, Numer. Linear Algebra Appl. 1 (1994), 179-210. (1994) Zbl0837.65027MR1277801DOI10.1002/nla.1680010208
  15. Kratzer, D., Parter, S. V., Steuerwalt, M., 10.1016/0045-7930(83)90015-4, Comput. Fluids 11 (1983), 255-279. (1983) Zbl0526.76003MR0726692DOI10.1016/0045-7930(83)90015-4
  16. Li, W., Liu, Y., Yang, J., Wu, W., 10.1007/s11063-017-9737-9, Neural Process. Lett. 48 (2018), 955-978. (2018) DOI10.1007/s11063-017-9737-9
  17. Nezhadhosein, S., 10.1007/s40995-020-01012-0, Iran. J. Sci. Technol., Trans. A, Sci. 45 (2021), 209-220. (2021) MR4208137DOI10.1007/s40995-020-01012-0
  18. Nocedal, J., Wright, S. J., 10.1007/978-0-387-40065-5, Springer Series in Operations Research and Financial Engineering. Springer, New York (2006). (2006) Zbl1104.65059MR2244940DOI10.1007/978-0-387-40065-5
  19. Perry, A., A class of conjugate gradient algorithms with a two-step variable metric memory, Discussion paper 269 (1977), 16 pages Available at https://EconPapers.repec.org/RePEc:nwu:cmsems:269. (1977) 
  20. Shanno, D. F., 10.1287/moor.3.3.244, Math. Oper. Res. 3 (1978), 244-256. (1978) Zbl0399.90077MR0506662DOI10.1287/moor.3.3.244
  21. Sun, M., Liu, J., Wang, Y., 10.1155/2020/9175496, Math. Probl. Eng. 2020 (2020), Article ID 9175496, 11 pages. (2020) Zbl7347959MR4099297DOI10.1155/2020/9175496
  22. Watkins, D. S., 10.1002/0471249718, Pure and Applied Mathematics. John Wiley & Sons, New York (2002). (2002) Zbl1005.65027MR1899577DOI10.1002/0471249718
  23. Winther, R., 10.1137/071700, SIAM J. Numer. Anal. 17 (1980), 14-17. (1980) Zbl0447.65021MR0559456DOI10.1137/071700
  24. Wolfe, P., 10.1137/1011036, SIAM Rev. 11 (1969), 226-235. (1969) Zbl0177.20603MR0250453DOI10.1137/1011036
  25. Wolfe, P., 10.1137/1013035, SIAM Rev. 13 (1971), 185-188. (1971) Zbl0216.26901MR0288943DOI10.1137/1013035

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.