Unified-like product of monoids and its regularity property

Esra Kırmızı Çetinalp

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 4, page 1113-1125
  • ISSN: 0011-4642

Abstract

top
We first define a new monoid construction (called unified-like product O Ω J ) under a unified product O J and the Schützenberger product O J . We investigate whether this algebraic construction defined with operations of the unified and Schützenberger product specifies a monoid or not. Then, we obtain a presentation of this new product for any two monoids. Finally, we define the necessary and sufficient conditions for O Ω J to be regular.

How to cite

top

Kırmızı Çetinalp, Esra. "Unified-like product of monoids and its regularity property." Czechoslovak Mathematical Journal 74.4 (2024): 1113-1125. <http://eudml.org/doc/299659>.

@article{KırmızıÇetinalp2024,
abstract = {We first define a new monoid construction (called unified-like product $O\mathbin \{\Diamond _\{\Omega \}\}J$) under a unified product $O\bowtie J$ and the Schützenberger product $O\mathbin \{\Diamond \} J$. We investigate whether this algebraic construction defined with operations of the unified and Schützenberger product specifies a monoid or not. Then, we obtain a presentation of this new product for any two monoids. Finally, we define the necessary and sufficient conditions for $O\mathbin \{\Diamond _\{\Omega \}\}J$ to be regular.},
author = {Kırmızı Çetinalp, Esra},
journal = {Czechoslovak Mathematical Journal},
keywords = {unified product; Schützenberger product; regularity},
language = {eng},
number = {4},
pages = {1113-1125},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Unified-like product of monoids and its regularity property},
url = {http://eudml.org/doc/299659},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Kırmızı Çetinalp, Esra
TI - Unified-like product of monoids and its regularity property
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 4
SP - 1113
EP - 1125
AB - We first define a new monoid construction (called unified-like product $O\mathbin {\Diamond _{\Omega }}J$) under a unified product $O\bowtie J$ and the Schützenberger product $O\mathbin {\Diamond } J$. We investigate whether this algebraic construction defined with operations of the unified and Schützenberger product specifies a monoid or not. Then, we obtain a presentation of this new product for any two monoids. Finally, we define the necessary and sufficient conditions for $O\mathbin {\Diamond _{\Omega }}J$ to be regular.
LA - eng
KW - unified product; Schützenberger product; regularity
UR - http://eudml.org/doc/299659
ER -

References

top
  1. Agore, A. L., Chirvăsitu, A., Ion, B., Militaru, G., 10.1007/s10468-009-9145-6, Algebr. Represent. Theory 12 (2009), 481-488. (2009) Zbl1187.20023MR2501197DOI10.1007/s10468-009-9145-6
  2. Agore, A. L., Frăţilă, D., 10.1007/s10587-010-0065-8, Czech. Math. J. 60 (2010), 889-901. (2010) Zbl1208.20030MR2738954DOI10.1007/s10587-010-0065-8
  3. Agore, A. L., Militaru, G., Crossed product of groups: Applications, Arab. J. Sci. Eng., Sect. C, Theme Issues 33 (2008), 1-17. (2008) Zbl1186.20021MR2500024
  4. Agore, A. L., Militaru, G., 10.1090/conm/585, Hopf Algebras and Tensor Categories Contemporary Mathematics 585. AMS, Providence (2013), 1-15. (2013) Zbl1301.16038MR3077233DOI10.1090/conm/585
  5. Agore, A. L., Militaru, G., 10.1016/j.laa.2013.07.021, Linear Algebra Appl. 439 (2013), 2609-2633. (2013) Zbl1281.17003MR3095673DOI10.1016/j.laa.2013.07.021
  6. Agore, A. L., Militaru, G., 10.1007/s00605-013-0537-7, Monatsh. Math. 174 (2014), 169-193. (2014) Zbl1378.17033MR3201255DOI10.1007/s00605-013-0537-7
  7. Agore, A. L., Militaru, G., 10.1007/s10468-013-9420-4, Algebr. Represent. Theory 17 (2014), 831-848. (2014) Zbl1337.20029MR3254771DOI10.1007/s10468-013-9420-4
  8. Agore, A. L., Militaru, G., 10.1016/j.jpaa.2022.107268, J. Pure Appl. Algebra 227 (2023), Article ID 107268, 19 pages. (2023) Zbl1510.17056MR4512536DOI10.1016/j.jpaa.2022.107268
  9. Ateş, F., Some new monoid and group constructions under semi-direct products, Ars Comb. 91 (2009), 203-218. (2009) Zbl1219.20036MR2501961
  10. Çetinalp, E. K., Regularity of iterated crossed product of monoids, Bull. Int. Math. Virtual Inst. 12 (2022), 151-158. (2022) MR4349201
  11. Çetinalp, E. K., 10.25092/baunfbed.903026, J. Balıkesir Univ. Inst. Sci. Technology 24 (2022), 71-78. (2022) MR4795137DOI10.25092/baunfbed.903026
  12. Çetinalp, E. K., 10.1007/s11253-024-02321-y, Ukr. J. Math. 76 (2024), 276-288. (2024) Zbl7906290MR4795137DOI10.1007/s11253-024-02321-y
  13. Çetinalp, E. K., Karpuz, E. G., 10.1007/s41980-018-0103-0, Bull. Iran. Math. Soc. 44 (2018), 1493-1508. (2018) Zbl1407.16024MR3878406DOI10.1007/s41980-018-0103-0
  14. Emin, A., Ateş, F., Ikikardeş, S., Cangül, I. N., 10.1186/1029-242X-2013-244, J. Inequal. Appl. 2013 (2013), Article ID 244, 6 pages. (2013) Zbl1286.20068MR3068629DOI10.1186/1029-242X-2013-244
  15. Howie, J. M., Ruškuc, N., 10.1080/00927879408825184, Commun. Algebra 22 (1994), 6209-6224. (1994) Zbl0823.20061MR1302999DOI10.1080/00927879408825184
  16. Karpuz, E. G., Ateş, F., Çevik, S., Regular and π -inverse monoids under Schützenberger products, Algebras Groups Geom. 27 (2010), 455-469. (2010) Zbl1242.20068MR2816635
  17. Karpuz, E. G., Çetinalp, E. K., 10.1007/s11587-022-00743-z, Ric. Mat 73 (2024), 2159-2171. (2024) Zbl7909925MR4780086DOI10.1007/s11587-022-00743-z
  18. Nico, W. R., 10.1016/0021-8693(83)90015-7, J. Algebra 80 (1983), 29-36. (1983) Zbl0512.20043MR0690701DOI10.1016/0021-8693(83)90015-7
  19. Redziejowski, R. R., 10.1051/ita/1995290302091, RAIRO, Inform. Théor. Appl. 29 (1995), 209-226. (1995) Zbl0833.68071MR1347594DOI10.1051/ita/1995290302091
  20. Rudkovskij, M. A., 10.1007/BF02673042, Sib. Math. J. 38 (1997), 969-977. (1997) Zbl0941.20030MR1486020DOI10.1007/BF02673042
  21. Schützenberger, M. P., 10.1016/S0019-9958(65)90108-7, Inf. Control 8 (1965), 190-194. (1965) Zbl0131.02001MR0176883DOI10.1016/S0019-9958(65)90108-7
  22. Straubing, H., 10.1016/0304-3975(81)90036-0, Theor. Comput. Sci. 13 (1981), 137-150. (1981) Zbl0456.20048MR0594057DOI10.1016/0304-3975(81)90036-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.