Unified-like product of monoids and its regularity property
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 4, page 1113-1125
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKırmızı Çetinalp, Esra. "Unified-like product of monoids and its regularity property." Czechoslovak Mathematical Journal 74.4 (2024): 1113-1125. <http://eudml.org/doc/299659>.
@article{KırmızıÇetinalp2024,
abstract = {We first define a new monoid construction (called unified-like product $O\mathbin \{\Diamond _\{\Omega \}\}J$) under a unified product $O\bowtie J$ and the Schützenberger product $O\mathbin \{\Diamond \} J$. We investigate whether this algebraic construction defined with operations of the unified and Schützenberger product specifies a monoid or not. Then, we obtain a presentation of this new product for any two monoids. Finally, we define the necessary and sufficient conditions for $O\mathbin \{\Diamond _\{\Omega \}\}J$ to be regular.},
author = {Kırmızı Çetinalp, Esra},
journal = {Czechoslovak Mathematical Journal},
keywords = {unified product; Schützenberger product; regularity},
language = {eng},
number = {4},
pages = {1113-1125},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Unified-like product of monoids and its regularity property},
url = {http://eudml.org/doc/299659},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Kırmızı Çetinalp, Esra
TI - Unified-like product of monoids and its regularity property
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 4
SP - 1113
EP - 1125
AB - We first define a new monoid construction (called unified-like product $O\mathbin {\Diamond _{\Omega }}J$) under a unified product $O\bowtie J$ and the Schützenberger product $O\mathbin {\Diamond } J$. We investigate whether this algebraic construction defined with operations of the unified and Schützenberger product specifies a monoid or not. Then, we obtain a presentation of this new product for any two monoids. Finally, we define the necessary and sufficient conditions for $O\mathbin {\Diamond _{\Omega }}J$ to be regular.
LA - eng
KW - unified product; Schützenberger product; regularity
UR - http://eudml.org/doc/299659
ER -
References
top- Agore, A. L., Chirvăsitu, A., Ion, B., Militaru, G., 10.1007/s10468-009-9145-6, Algebr. Represent. Theory 12 (2009), 481-488. (2009) Zbl1187.20023MR2501197DOI10.1007/s10468-009-9145-6
- Agore, A. L., Frăţilă, D., 10.1007/s10587-010-0065-8, Czech. Math. J. 60 (2010), 889-901. (2010) Zbl1208.20030MR2738954DOI10.1007/s10587-010-0065-8
- Agore, A. L., Militaru, G., Crossed product of groups: Applications, Arab. J. Sci. Eng., Sect. C, Theme Issues 33 (2008), 1-17. (2008) Zbl1186.20021MR2500024
- Agore, A. L., Militaru, G., 10.1090/conm/585, Hopf Algebras and Tensor Categories Contemporary Mathematics 585. AMS, Providence (2013), 1-15. (2013) Zbl1301.16038MR3077233DOI10.1090/conm/585
- Agore, A. L., Militaru, G., 10.1016/j.laa.2013.07.021, Linear Algebra Appl. 439 (2013), 2609-2633. (2013) Zbl1281.17003MR3095673DOI10.1016/j.laa.2013.07.021
- Agore, A. L., Militaru, G., 10.1007/s00605-013-0537-7, Monatsh. Math. 174 (2014), 169-193. (2014) Zbl1378.17033MR3201255DOI10.1007/s00605-013-0537-7
- Agore, A. L., Militaru, G., 10.1007/s10468-013-9420-4, Algebr. Represent. Theory 17 (2014), 831-848. (2014) Zbl1337.20029MR3254771DOI10.1007/s10468-013-9420-4
- Agore, A. L., Militaru, G., 10.1016/j.jpaa.2022.107268, J. Pure Appl. Algebra 227 (2023), Article ID 107268, 19 pages. (2023) Zbl1510.17056MR4512536DOI10.1016/j.jpaa.2022.107268
- Ateş, F., Some new monoid and group constructions under semi-direct products, Ars Comb. 91 (2009), 203-218. (2009) Zbl1219.20036MR2501961
- Çetinalp, E. K., Regularity of iterated crossed product of monoids, Bull. Int. Math. Virtual Inst. 12 (2022), 151-158. (2022) MR4349201
- Çetinalp, E. K., 10.25092/baunfbed.903026, J. Balıkesir Univ. Inst. Sci. Technology 24 (2022), 71-78. (2022) MR4795137DOI10.25092/baunfbed.903026
- Çetinalp, E. K., 10.1007/s11253-024-02321-y, Ukr. J. Math. 76 (2024), 276-288. (2024) Zbl7906290MR4795137DOI10.1007/s11253-024-02321-y
- Çetinalp, E. K., Karpuz, E. G., 10.1007/s41980-018-0103-0, Bull. Iran. Math. Soc. 44 (2018), 1493-1508. (2018) Zbl1407.16024MR3878406DOI10.1007/s41980-018-0103-0
- Emin, A., Ateş, F., Ikikardeş, S., Cangül, I. N., 10.1186/1029-242X-2013-244, J. Inequal. Appl. 2013 (2013), Article ID 244, 6 pages. (2013) Zbl1286.20068MR3068629DOI10.1186/1029-242X-2013-244
- Howie, J. M., Ruškuc, N., 10.1080/00927879408825184, Commun. Algebra 22 (1994), 6209-6224. (1994) Zbl0823.20061MR1302999DOI10.1080/00927879408825184
- Karpuz, E. G., Ateş, F., Çevik, S., Regular and -inverse monoids under Schützenberger products, Algebras Groups Geom. 27 (2010), 455-469. (2010) Zbl1242.20068MR2816635
- Karpuz, E. G., Çetinalp, E. K., 10.1007/s11587-022-00743-z, Ric. Mat 73 (2024), 2159-2171. (2024) Zbl7909925MR4780086DOI10.1007/s11587-022-00743-z
- Nico, W. R., 10.1016/0021-8693(83)90015-7, J. Algebra 80 (1983), 29-36. (1983) Zbl0512.20043MR0690701DOI10.1016/0021-8693(83)90015-7
- Redziejowski, R. R., 10.1051/ita/1995290302091, RAIRO, Inform. Théor. Appl. 29 (1995), 209-226. (1995) Zbl0833.68071MR1347594DOI10.1051/ita/1995290302091
- Rudkovskij, M. A., 10.1007/BF02673042, Sib. Math. J. 38 (1997), 969-977. (1997) Zbl0941.20030MR1486020DOI10.1007/BF02673042
- Schützenberger, M. P., 10.1016/S0019-9958(65)90108-7, Inf. Control 8 (1965), 190-194. (1965) Zbl0131.02001MR0176883DOI10.1016/S0019-9958(65)90108-7
- Straubing, H., 10.1016/0304-3975(81)90036-0, Theor. Comput. Sci. 13 (1981), 137-150. (1981) Zbl0456.20048MR0594057DOI10.1016/0304-3975(81)90036-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.