Schützenberger-like products in non-free monoids
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1995)
- Volume: 29, Issue: 3, page 209-226
- ISSN: 0988-3754
Access Full Article
topHow to cite
topRedziejowski, Roman R.. "Schützenberger-like products in non-free monoids." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 29.3 (1995): 209-226. <http://eudml.org/doc/92505>.
@article{Redziejowski1995,
author = {Redziejowski, Roman R.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {Straubing product; equidivisible monoids; recognizable languages; commutative monoids; Schützenberger product; diamond product for traces},
language = {eng},
number = {3},
pages = {209-226},
publisher = {EDP-Sciences},
title = {Schützenberger-like products in non-free monoids},
url = {http://eudml.org/doc/92505},
volume = {29},
year = {1995},
}
TY - JOUR
AU - Redziejowski, Roman R.
TI - Schützenberger-like products in non-free monoids
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1995
PB - EDP-Sciences
VL - 29
IS - 3
SP - 209
EP - 226
LA - eng
KW - Straubing product; equidivisible monoids; recognizable languages; commutative monoids; Schützenberger product; diamond product for traces
UR - http://eudml.org/doc/92505
ER -
References
top- 1. R. CORI and D. PERRIN, Automates et commutations partielles, Informatique Théorique et Applications, 1985, 19, pp.21-32. Zbl0601.68055MR795769
- 2. V. DIEKERT, Combinatorics on Traces, Lecture Notes in Comp. Sci., 1987, 454, Springer-Verlag. Zbl0717.68002MR1075995
- 3. S. EILENBERG, Automata, Languages and Machines B, Academic Press, 1976. Zbl0359.94067
- 4. P. GASTIN, A. PETIT and W. ZIELONKA, An extension of Kleene's and Ochmanski's theorems to infinite traces, Theoret. Comp. Sci., 1994, 125, pp. 167-204. Zbl0795.68116MR1264131
- 5. K. KURATOWSKI and A. MOSTOWSKI, Set Theory, North Holland, 1976. Zbl0337.02034MR485384
- 6. J. D. Jr. MCKNIGHT, Kleene quotient theorems, Pacific J. of Math., 1964, 14, pp. 1343-1352. Zbl0144.01201MR180612
- 7. J. D. Jr. MCKNIGHT and A. J. STOREY, Equidivisible semigroups, J. Algebra, 1969, 12, pp.24-48. Zbl0192.34504MR238982
- 8. G. LALLEMENT, Semigroups and Combinatorial Applications, John Wiley and Sons, 1979. Zbl0421.20025MR530552
- 9. F. W. LEVI, On semigroups, Bull. Calcutta Math. Soc., 1944, 36, pp. 141-146. Zbl0061.02405MR11694
- 10. L. PETRONE and M. P. SCHÜTZENBERGER, Sur un problème de McNaughton, Report, CETTS-EURATOM, 1963.
- 11. J. E. PIN, Hiérarchies de concaténation, RAIRO Informatique Théorique, 1984, 18, pp. 23-46. Zbl0559.68062MR750449
- 12. J. E. PIN, Varieties of Formal Languages, North Oxford Academic, 1986. Zbl0655.68095MR912694
- 13. C. REUTENAUER, Sur les variétés de langages et de monoïdes. In Theoretical Computer Science 4th GI Conference (Ed. K. WEIHRAUCH), Lecture Notes in Comp. Sci. 67, Springer-Verlag, 1979, pp. 260-265. Zbl0411.68066MR568110
- 14. M. P. SCHÜTZENBERGER, On finite monoids having only trivial semigroups, Information and Control, 1965, 8, pp. 190-194. Zbl0131.02001MR176883
- 15. M. P. SCHÜTZENBERGER, Sur certaines variétés de monoïdes finis, In Automata Theory, (Ed. E. R. CAIANIELLO), Academic Press, 1966, pp. 314-319. Zbl0192.07901MR205766
- 16. I. SIMON, The product of rational languages. In Automata, Languages and Programming, (Ed. A. LINGAS, R. KARLSSON and S. CARLSSON), Lecture Notes in Comp. Sci. 700, Springer-Verlag, 1993, pp. 430-444. MR1252424
- 17. H. STRAUBING, A generalization of the Schützenberger product of finite monoids, Theoret. Comp. Sci., 1981, 13, pp. 137-150. Zbl0456.20048MR594057
- 18. P. WEIL, Concatenation product: a survey. In Formal Properties of Finite Automata and Applications, (Ed. J. E. PIN), Lecture Notes in Comp. Sci. 386, Springer-Verlag, 1989, pp. 120-137. MR1051955
- 19. P. WEIL, Product of Languages with counter, Theoret. Comp. Sci., 1990, 76, pp. 251-260. Zbl0704.68071MR1079529
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.