Schützenberger-like products in non-free monoids

Roman R. Redziejowski

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1995)

  • Volume: 29, Issue: 3, page 209-226
  • ISSN: 0988-3754

How to cite

top

Redziejowski, Roman R.. "Schützenberger-like products in non-free monoids." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 29.3 (1995): 209-226. <http://eudml.org/doc/92505>.

@article{Redziejowski1995,
author = {Redziejowski, Roman R.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {Straubing product; equidivisible monoids; recognizable languages; commutative monoids; Schützenberger product; diamond product for traces},
language = {eng},
number = {3},
pages = {209-226},
publisher = {EDP-Sciences},
title = {Schützenberger-like products in non-free monoids},
url = {http://eudml.org/doc/92505},
volume = {29},
year = {1995},
}

TY - JOUR
AU - Redziejowski, Roman R.
TI - Schützenberger-like products in non-free monoids
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1995
PB - EDP-Sciences
VL - 29
IS - 3
SP - 209
EP - 226
LA - eng
KW - Straubing product; equidivisible monoids; recognizable languages; commutative monoids; Schützenberger product; diamond product for traces
UR - http://eudml.org/doc/92505
ER -

References

top
  1. 1. R. CORI and D. PERRIN, Automates et commutations partielles, Informatique Théorique et Applications, 1985, 19, pp.21-32. Zbl0601.68055MR795769
  2. 2. V. DIEKERT, Combinatorics on Traces, Lecture Notes in Comp. Sci., 1987, 454, Springer-Verlag. Zbl0717.68002MR1075995
  3. 3. S. EILENBERG, Automata, Languages and Machines B, Academic Press, 1976. Zbl0359.94067
  4. 4. P. GASTIN, A. PETIT and W. ZIELONKA, An extension of Kleene's and Ochmanski's theorems to infinite traces, Theoret. Comp. Sci., 1994, 125, pp. 167-204. Zbl0795.68116MR1264131
  5. 5. K. KURATOWSKI and A. MOSTOWSKI, Set Theory, North Holland, 1976. Zbl0337.02034MR485384
  6. 6. J. D. Jr. MCKNIGHT, Kleene quotient theorems, Pacific J. of Math., 1964, 14, pp. 1343-1352. Zbl0144.01201MR180612
  7. 7. J. D. Jr. MCKNIGHT and A. J. STOREY, Equidivisible semigroups, J. Algebra, 1969, 12, pp.24-48. Zbl0192.34504MR238982
  8. 8. G. LALLEMENT, Semigroups and Combinatorial Applications, John Wiley and Sons, 1979. Zbl0421.20025MR530552
  9. 9. F. W. LEVI, On semigroups, Bull. Calcutta Math. Soc., 1944, 36, pp. 141-146. Zbl0061.02405MR11694
  10. 10. L. PETRONE and M. P. SCHÜTZENBERGER, Sur un problème de McNaughton, Report, CETTS-EURATOM, 1963. 
  11. 11. J. E. PIN, Hiérarchies de concaténation, RAIRO Informatique Théorique, 1984, 18, pp. 23-46. Zbl0559.68062MR750449
  12. 12. J. E. PIN, Varieties of Formal Languages, North Oxford Academic, 1986. Zbl0655.68095MR912694
  13. 13. C. REUTENAUER, Sur les variétés de langages et de monoïdes. In Theoretical Computer Science 4th GI Conference (Ed. K. WEIHRAUCH), Lecture Notes in Comp. Sci. 67, Springer-Verlag, 1979, pp. 260-265. Zbl0411.68066MR568110
  14. 14. M. P. SCHÜTZENBERGER, On finite monoids having only trivial semigroups, Information and Control, 1965, 8, pp. 190-194. Zbl0131.02001MR176883
  15. 15. M. P. SCHÜTZENBERGER, Sur certaines variétés de monoïdes finis, In Automata Theory, (Ed. E. R. CAIANIELLO), Academic Press, 1966, pp. 314-319. Zbl0192.07901MR205766
  16. 16. I. SIMON, The product of rational languages. In Automata, Languages and Programming, (Ed. A. LINGAS, R. KARLSSON and S. CARLSSON), Lecture Notes in Comp. Sci. 700, Springer-Verlag, 1993, pp. 430-444. MR1252424
  17. 17. H. STRAUBING, A generalization of the Schützenberger product of finite monoids, Theoret. Comp. Sci., 1981, 13, pp. 137-150. Zbl0456.20048MR594057
  18. 18. P. WEIL, Concatenation product: a survey. In Formal Properties of Finite Automata and Applications, (Ed. J. E. PIN), Lecture Notes in Comp. Sci. 386, Springer-Verlag, 1989, pp. 120-137. MR1051955
  19. 19. P. WEIL, Product of Languages with counter, Theoret. Comp. Sci., 1990, 76, pp. 251-260. Zbl0704.68071MR1079529

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.