Quantization of semisimple real Lie groups
Archivum Mathematicum (2024)
- Volume: 060, Issue: 5, page 285-310
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topDe Commer, Kenny. "Quantization of semisimple real Lie groups." Archivum Mathematicum 060.5 (2024): 285-310. <http://eudml.org/doc/299661>.
@article{DeCommer2024,
abstract = {We provide a novel construction of quantized universal enveloping $*$-algebras of real semisimple Lie algebras, based on Letzter’s theory of quantum symmetric pairs. We show that these structures can be ‘integrated’, leading to a quantization of the group C$^*$-algebra of an arbitrary semisimple algebraic real Lie group.},
author = {De Commer, Kenny},
journal = {Archivum Mathematicum},
keywords = {quantum groups; real forms; quantized enveloping algebras; Harish-Chandra modules},
language = {eng},
number = {5},
pages = {285-310},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Quantization of semisimple real Lie groups},
url = {http://eudml.org/doc/299661},
volume = {060},
year = {2024},
}
TY - JOUR
AU - De Commer, Kenny
TI - Quantization of semisimple real Lie groups
JO - Archivum Mathematicum
PY - 2024
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 060
IS - 5
SP - 285
EP - 310
AB - We provide a novel construction of quantized universal enveloping $*$-algebras of real semisimple Lie algebras, based on Letzter’s theory of quantum symmetric pairs. We show that these structures can be ‘integrated’, leading to a quantization of the group C$^*$-algebra of an arbitrary semisimple algebraic real Lie group.
LA - eng
KW - quantum groups; real forms; quantized enveloping algebras; Harish-Chandra modules
UR - http://eudml.org/doc/299661
ER -
References
top- Abella, A., Santos, W.F., Hai, M., 10.11606/issn.2316-9028.v3i2p193-229, São Paulo J. Math. Sci. 3 (2) (2009), 193–229. (2009) MR2604652DOI10.11606/issn.2316-9028.v3i2p193-229
- Arano, Y., 10.1007/s00220-016-2704-x, Comm. Math. Phys. 351 (3) (2017), 1137–1147. (2017) MR3623249DOI10.1007/s00220-016-2704-x
- Arano, Y., 10.1515/crelle-2015-0079, J. Reine Angew. Math. 742 (2018), 157–186. (2018) MR3849625DOI10.1515/crelle-2015-0079
- Baldoni, W., Frajria, P.M., 10.1090/S0002-9947-97-01759-5, Trans. Amer. Math. Soc. 8 (1997), 3235–3276. (1997) MR1390033DOI10.1090/S0002-9947-97-01759-5
- Bao, H., Wang, W., 10.1007/s00222-018-0801-5, Invent. Math. 213 (3) (2018), 1099–1177. (2018) MR3842062DOI10.1007/s00222-018-0801-5
- Caenepeel, S., Militaru, G., Shenglin, Z., 10.1007/BF02773642, Israel J. Math. 100 (1997), 221–247. (1997) MR1469112DOI10.1007/BF02773642
- Chari, V., Pressley, A.N., A guide to quantum groups, Cambridge University Press, 1995. (1995) MR1358358
- Chirvasitu, A., 10.1016/j.jalgebra.2018.08.033, J. Algebra 516 (2018), 271–297. (2018) MR3863479DOI10.1016/j.jalgebra.2018.08.033
- Ciccoli, N., Gavarini, F., 10.1016/j.aim.2005.01.009, Adv. Math. 199 (2006), 104–135. (2006) MR2187400DOI10.1016/j.aim.2005.01.009
- Dăscălescu, S., Năstăsescu, C., Raianu, Ş., Hopf algebras: An introduction, Monographs and Textbooks in Pure and Applied Mathematics, vol. 235, Marcel Dekker, 2001. (2001) MR1786197
- De Commer, K., Dzokou Talla, J.R., 10.1093/imrn/rnae094, Int. Math. Res. Not. 2024 (14) (2024), 10650–10677. (2024) MR4776189DOI10.1093/imrn/rnae094
- De Commer, K., Dzokou Talla, J.R., Quantum and its irreducible representations, J. Operator Theory 91 (2) (2024), 101–128. (2024) MR4750927
- De Commer, K., Matassa, M., 10.1016/j.aim.2020.107029, Adv. Math. 366 (2020), 107029. (2020) MR4070299DOI10.1016/j.aim.2020.107029
- De Commer, K., Neshveyev, S., Tuset, L., Yamashita, M., 10.1017/fmp.2023.11, Forum of Mathematics, Pi, vol. 11 (14), Cambridge University Press, 2023, doi:10.1017/fmp.2023.11. (2023) MR4585468DOI10.1017/fmp.2023.11
- De Commer, K., Yamashit, M., Tannaka-Kreĭn duality for compact quantum homogeneous spaces. I. General Theory, Theory Appl. Categ. 28 (31) (2013), 1099–1138. (2013) MR3121622
- Dijkhuizen, M.S., 10.1007/BF00116516, Representations of Lie Groups, Lie Algebras and Their Quantum Analogues, Acta Appl. Math., vol. 44, Kluwer Academic Publishers, 1996, pp. 59–80. (1996) MR1407040DOI10.1007/BF00116516
- Dijkhuizen, M.S., Koornwinder, T.H., 10.1007/BF00761142, Lett. Math. Phys. 32 (1994), 315–330. (1994) MR1310296DOI10.1007/BF00761142
- Dijkhuizen, M.S., Noumi, M., 10.1090/S0002-9947-98-01971-0, Trans. Amer. Math. Soc. 350 (8) (1998), 3269–3296. (1998) MR1432197DOI10.1090/S0002-9947-98-01971-0
- Doi, Y., 10.1016/0021-8693(92)90160-N, J. Algebra 153 (1992), 373–385. (1992) MR1198206DOI10.1016/0021-8693(92)90160-N
- Drinfeld, V.G., Quantum groups, Proceedings of the International Congress of Mathematicians, Berkeley, Calif., 1986, Amer. Math. Soc., 1987, pp. 798–820. (1987) MR0934283
- Drinfeld, V.G., On Poisson homogeneous spaces of Poisson-Lie groups, Teoret. Mat. Fiz. 95 (2) (1993), 226–227. (1993) MR1243249
- Etingof, P., Schiffmann, O., Lectures on Quantum Groups, Lect. Math. Phys., International Press, 1998. (1998) MR1698405
- Jimbo, M., 10.1007/BF00704588, Lett. Math. Phys. 10 (1985), 63–69. (1985) MR0797001DOI10.1007/BF00704588
- Koelink, E., Kustermans, J., 10.1007/s00220-002-0736-x, Comm. Math. Phys. 233 (2003), 231–296. (2003) MR1962042DOI10.1007/s00220-002-0736-x
- Kolb, S., 10.1016/j.aim.2014.08.010, Adv. Math. 267 (2014), 395–469. (2014) MR3269184DOI10.1016/j.aim.2014.08.010
- Koornwinder, T., 10.1137/0524049, SIAM J. Math. Anal 24 (N3) (1993), 795–813. (1993) MR1215439DOI10.1137/0524049
- Koppinen, M., 10.1016/0022-4049(94)00124-2, J. Pure Appl. Algebra 104 (1995), 61–80. (1995) MR1359691DOI10.1016/0022-4049(94)00124-2
- Korogodsky, L.I., 10.1007/BF02101457, Comm. Math. Phys. 163 (1994), 433–460. (1994) MR1284791DOI10.1007/BF02101457
- Letzter, G., 10.1006/jabr.1999.8015, J. Algebra 220 (2) (1999), 729–767. (1999) MR1717368DOI10.1006/jabr.1999.8015
- Letzter, G., Coideal subalgebras and quantum symmetric pairs, New directions in Hopf algebras, vol. 43, Cambridge Univ. Press, Cambridge, Math. Sci. Res. Inst. Publ. ed., 2002, pp. 141–170. (2002) MR1913438
- Levendorskii, S., Soibelman, Y., 10.1007/BF02102732, Comm. Math. Phys. 139 (1991), 141–170. (1991) MR1116413DOI10.1007/BF02102732
- Müller, E.F., Schneider, H.-J., 10.1007/BF02810683, Israel J. Math. 111 (1999), 157–190. (1999) MR1710737DOI10.1007/BF02810683
- Noumi, M., 10.1006/aima.1996.0066, Adv. Math. 123 (1) (1996), 16–77. (1996) MR1413836DOI10.1006/aima.1996.0066
- Noumi, M., Sugitani, T., Quantum symmetric spaces and related q-orthogonal polynomials, Group Theoretical Methods in Physics (ICGTMP) (Toyonaka, Japan, 1994), World Sci. Publishing, River Edge, N.J., 1995, pp. 28–40. (1995) MR1413733
- Schauenburg, P., Doi-Koppinen Hopf Modules Versus Entwined Modules, New York J. Math. 6 (200), 325–329. (200) MR1800353
- Takeuchi, M., 10.1016/0021-8693(79)90093-0, J. Algebra 60 (1979), 452–471. (1979) MR0549940DOI10.1016/0021-8693(79)90093-0
- Takeuchi, M., , J. Algebra 67 (1980), 436–475. (1980) MR0602073
- Twietmeyer, E., Real forms of , Lett. Math. Phys. 24 (1992), 49–58. (1992) MR1162899
- Voigt, C., Yuncken, R., Complex Semisimple Quantum Groups and Representation Theory, Lecture Notes in Mathematics, vol. 2264, Springer International Publishing, 2020, pp. 376+X pp. (2020) MR4162277
- Voigt, C., Yuncken, R., 10.24033/asens.2535, Ann. Sci. Éc. Norm. Supér. 56 (1) (2023), 299–322. (2023) MR4637134DOI10.24033/asens.2535
- Woronowicz, S.L., Extended quantum group. Hilbert space level, Preprint KMMF (unfinished) (2000). MR1616348
- Woronowicz, S.L., 10.1007/BF01219077, Comm. Math. Phys. 111 (1987), 613–665. (1987) MR0901157DOI10.1007/BF01219077
- Woronowicz, S.L., 10.1007/BF01393687, Invent. Math. 93 (1) (1988), 35–76. (1988) MR0943923DOI10.1007/BF01393687
- Woronowicz, S.L., 10.1007/BF02100032, Comm. Math. Phys. 136 (1991), 399–432. (1991) MR1096123DOI10.1007/BF02100032
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.