Quantization of semisimple real Lie groups

Kenny De Commer

Archivum Mathematicum (2024)

  • Volume: 060, Issue: 5, page 285-310
  • ISSN: 0044-8753

Abstract

top
We provide a novel construction of quantized universal enveloping * -algebras of real semisimple Lie algebras, based on Letzter’s theory of quantum symmetric pairs. We show that these structures can be ‘integrated’, leading to a quantization of the group C * -algebra of an arbitrary semisimple algebraic real Lie group.

How to cite

top

De Commer, Kenny. "Quantization of semisimple real Lie groups." Archivum Mathematicum 060.5 (2024): 285-310. <http://eudml.org/doc/299661>.

@article{DeCommer2024,
abstract = {We provide a novel construction of quantized universal enveloping $*$-algebras of real semisimple Lie algebras, based on Letzter’s theory of quantum symmetric pairs. We show that these structures can be ‘integrated’, leading to a quantization of the group C$^*$-algebra of an arbitrary semisimple algebraic real Lie group.},
author = {De Commer, Kenny},
journal = {Archivum Mathematicum},
keywords = {quantum groups; real forms; quantized enveloping algebras; Harish-Chandra modules},
language = {eng},
number = {5},
pages = {285-310},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Quantization of semisimple real Lie groups},
url = {http://eudml.org/doc/299661},
volume = {060},
year = {2024},
}

TY - JOUR
AU - De Commer, Kenny
TI - Quantization of semisimple real Lie groups
JO - Archivum Mathematicum
PY - 2024
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 060
IS - 5
SP - 285
EP - 310
AB - We provide a novel construction of quantized universal enveloping $*$-algebras of real semisimple Lie algebras, based on Letzter’s theory of quantum symmetric pairs. We show that these structures can be ‘integrated’, leading to a quantization of the group C$^*$-algebra of an arbitrary semisimple algebraic real Lie group.
LA - eng
KW - quantum groups; real forms; quantized enveloping algebras; Harish-Chandra modules
UR - http://eudml.org/doc/299661
ER -

References

top
  1. Abella, A., Santos, W.F., Hai, M., 10.11606/issn.2316-9028.v3i2p193-229, São Paulo J. Math. Sci. 3 (2) (2009), 193–229. (2009) MR2604652DOI10.11606/issn.2316-9028.v3i2p193-229
  2. Arano, Y., 10.1007/s00220-016-2704-x, Comm. Math. Phys. 351 (3) (2017), 1137–1147. (2017) MR3623249DOI10.1007/s00220-016-2704-x
  3. Arano, Y., 10.1515/crelle-2015-0079, J. Reine Angew. Math. 742 (2018), 157–186. (2018) MR3849625DOI10.1515/crelle-2015-0079
  4. Baldoni, W., Frajria, P.M., 10.1090/S0002-9947-97-01759-5, Trans. Amer. Math. Soc. 8 (1997), 3235–3276. (1997) MR1390033DOI10.1090/S0002-9947-97-01759-5
  5. Bao, H., Wang, W., 10.1007/s00222-018-0801-5, Invent. Math. 213 (3) (2018), 1099–1177. (2018) MR3842062DOI10.1007/s00222-018-0801-5
  6. Caenepeel, S., Militaru, G., Shenglin, Z., 10.1007/BF02773642, Israel J. Math. 100 (1997), 221–247. (1997) MR1469112DOI10.1007/BF02773642
  7. Chari, V., Pressley, A.N., A guide to quantum groups, Cambridge University Press, 1995. (1995) MR1358358
  8. Chirvasitu, A., 10.1016/j.jalgebra.2018.08.033, J. Algebra 516 (2018), 271–297. (2018) MR3863479DOI10.1016/j.jalgebra.2018.08.033
  9. Ciccoli, N., Gavarini, F., 10.1016/j.aim.2005.01.009, Adv. Math. 199 (2006), 104–135. (2006) MR2187400DOI10.1016/j.aim.2005.01.009
  10. Dăscălescu, S., Năstăsescu, C., Raianu, Ş., Hopf algebras: An introduction, Monographs and Textbooks in Pure and Applied Mathematics, vol. 235, Marcel Dekker, 2001. (2001) MR1786197
  11. De Commer, K., Dzokou Talla, J.R., 10.1093/imrn/rnae094, Int. Math. Res. Not. 2024 (14) (2024), 10650–10677. (2024) MR4776189DOI10.1093/imrn/rnae094
  12. De Commer, K., Dzokou Talla, J.R., Quantum S L ( 2 , ) and its irreducible representations, J. Operator Theory 91 (2) (2024), 101–128. (2024) MR4750927
  13. De Commer, K., Matassa, M., 10.1016/j.aim.2020.107029, Adv. Math. 366 (2020), 107029. (2020) MR4070299DOI10.1016/j.aim.2020.107029
  14. De Commer, K., Neshveyev, S., Tuset, L., Yamashita, M., 10.1017/fmp.2023.11, Forum of Mathematics, Pi, vol. 11 (14), Cambridge University Press, 2023, doi:10.1017/fmp.2023.11. (2023) MR4585468DOI10.1017/fmp.2023.11
  15. De Commer, K., Yamashit, M., Tannaka-Kreĭn duality for compact quantum homogeneous spaces. I. General Theory, Theory Appl. Categ. 28 (31) (2013), 1099–1138. (2013) MR3121622
  16. Dijkhuizen, M.S., 10.1007/BF00116516, Representations of Lie Groups, Lie Algebras and Their Quantum Analogues, Acta Appl. Math., vol. 44, Kluwer Academic Publishers, 1996, pp. 59–80. (1996) MR1407040DOI10.1007/BF00116516
  17. Dijkhuizen, M.S., Koornwinder, T.H., 10.1007/BF00761142, Lett. Math. Phys. 32 (1994), 315–330. (1994) MR1310296DOI10.1007/BF00761142
  18. Dijkhuizen, M.S., Noumi, M., 10.1090/S0002-9947-98-01971-0, Trans. Amer. Math. Soc. 350 (8) (1998), 3269–3296. (1998) MR1432197DOI10.1090/S0002-9947-98-01971-0
  19. Doi, Y., 10.1016/0021-8693(92)90160-N, J. Algebra 153 (1992), 373–385. (1992) MR1198206DOI10.1016/0021-8693(92)90160-N
  20. Drinfeld, V.G., Quantum groups, Proceedings of the International Congress of Mathematicians, Berkeley, Calif., 1986, Amer. Math. Soc., 1987, pp. 798–820. (1987) MR0934283
  21. Drinfeld, V.G., On Poisson homogeneous spaces of Poisson-Lie groups, Teoret. Mat. Fiz. 95 (2) (1993), 226–227. (1993) MR1243249
  22. Etingof, P., Schiffmann, O., Lectures on Quantum Groups, Lect. Math. Phys., International Press, 1998. (1998) MR1698405
  23. Jimbo, M., 10.1007/BF00704588, Lett. Math. Phys. 10 (1985), 63–69. (1985) MR0797001DOI10.1007/BF00704588
  24. Koelink, E., Kustermans, J., 10.1007/s00220-002-0736-x, Comm. Math. Phys. 233 (2003), 231–296. (2003) MR1962042DOI10.1007/s00220-002-0736-x
  25. Kolb, S., 10.1016/j.aim.2014.08.010, Adv. Math. 267 (2014), 395–469. (2014) MR3269184DOI10.1016/j.aim.2014.08.010
  26. Koornwinder, T., 10.1137/0524049, SIAM J. Math. Anal 24 (N3) (1993), 795–813. (1993) MR1215439DOI10.1137/0524049
  27. Koppinen, M., 10.1016/0022-4049(94)00124-2, J. Pure Appl. Algebra 104 (1995), 61–80. (1995) MR1359691DOI10.1016/0022-4049(94)00124-2
  28. Korogodsky, L.I., 10.1007/BF02101457, Comm. Math. Phys. 163 (1994), 433–460. (1994) MR1284791DOI10.1007/BF02101457
  29. Letzter, G., 10.1006/jabr.1999.8015, J. Algebra 220 (2) (1999), 729–767. (1999) MR1717368DOI10.1006/jabr.1999.8015
  30. Letzter, G., Coideal subalgebras and quantum symmetric pairs, New directions in Hopf algebras, vol. 43, Cambridge Univ. Press, Cambridge, Math. Sci. Res. Inst. Publ. ed., 2002, pp. 141–170. (2002) MR1913438
  31. Levendorskii, S., Soibelman, Y., 10.1007/BF02102732, Comm. Math. Phys. 139 (1991), 141–170. (1991) MR1116413DOI10.1007/BF02102732
  32. Müller, E.F., Schneider, H.-J., 10.1007/BF02810683, Israel J. Math. 111 (1999), 157–190. (1999) MR1710737DOI10.1007/BF02810683
  33. Noumi, M., 10.1006/aima.1996.0066, Adv. Math. 123 (1) (1996), 16–77. (1996) MR1413836DOI10.1006/aima.1996.0066
  34. Noumi, M., Sugitani, T., Quantum symmetric spaces and related q-orthogonal polynomials, Group Theoretical Methods in Physics (ICGTMP) (Toyonaka, Japan, 1994), World Sci. Publishing, River Edge, N.J., 1995, pp. 28–40. (1995) MR1413733
  35. Schauenburg, P., Doi-Koppinen Hopf Modules Versus Entwined Modules, New York J. Math. 6 (200), 325–329. (200) MR1800353
  36. Takeuchi, M., 10.1016/0021-8693(79)90093-0, J. Algebra 60 (1979), 452–471. (1979) MR0549940DOI10.1016/0021-8693(79)90093-0
  37. Takeuchi, M., Ext ad ( S p R , μ A ) Br ^ ( A / k ) , J. Algebra 67 (1980), 436–475. (1980) MR0602073
  38. Twietmeyer, E., Real forms of U q ( 𝔤 ) , Lett. Math. Phys. 24 (1992), 49–58. (1992) MR1162899
  39. Voigt, C., Yuncken, R., Complex Semisimple Quantum Groups and Representation Theory, Lecture Notes in Mathematics, vol. 2264, Springer International Publishing, 2020, pp. 376+X pp. (2020) MR4162277
  40. Voigt, C., Yuncken, R., 10.24033/asens.2535, Ann. Sci. Éc. Norm. Supér. 56 (1) (2023), 299–322. (2023) MR4637134DOI10.24033/asens.2535
  41. Woronowicz, S.L., Extended S U ( 1 , 1 ) quantum group. Hilbert space level, Preprint KMMF (unfinished) (2000). MR1616348
  42. Woronowicz, S.L., 10.1007/BF01219077, Comm. Math. Phys. 111 (1987), 613–665. (1987) MR0901157DOI10.1007/BF01219077
  43. Woronowicz, S.L., 10.1007/BF01393687, Invent. Math. 93 (1) (1988), 35–76. (1988) MR0943923DOI10.1007/BF01393687
  44. Woronowicz, S.L., 10.1007/BF02100032, Comm. Math. Phys. 136 (1991), 399–432. (1991) MR1096123DOI10.1007/BF02100032

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.