Local equivalence of some maximally symmetric -distributions II
Archivum Mathematicum (2025)
- Issue: 1, page 9-41
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topRandall, Matthew. "Local equivalence of some maximally symmetric $(2,3,5)$-distributions II." Archivum Mathematicum (2025): 9-41. <http://eudml.org/doc/299899>.
@article{Randall2025,
abstract = {We show the change of coordinates that maps the maximally symmetric $(2,3,5)$-distribution given by solutions to the $k=\frac\{2\}\{3\}$ and $k=\frac\{3\}\{2\}$ generalised Chazy equation to the flat Cartan distribution. This establishes the local equivalence between the maximally symmetric $k=\frac\{2\}\{3\}$ and $k=\frac\{3\}\{2\}$ generalised Chazy distribution and the flat Cartan or Hilbert-Cartan distribution. We give the set of vector fields parametrised by solutions to the $k=\frac\{2\}\{3\}$ and $k=\frac\{3\}\{2\}$ generalised Chazy equation and the corresponding Ricci-flat conformal scale that bracket-generate to give the split real form of $\mathfrak \{g\}_2$.},
author = {Randall, Matthew},
journal = {Archivum Mathematicum},
keywords = {(2; 3; 5)-distributions; generalised Chazy equation},
language = {eng},
number = {1},
pages = {9-41},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Local equivalence of some maximally symmetric $(2,3,5)$-distributions II},
url = {http://eudml.org/doc/299899},
year = {2025},
}
TY - JOUR
AU - Randall, Matthew
TI - Local equivalence of some maximally symmetric $(2,3,5)$-distributions II
JO - Archivum Mathematicum
PY - 2025
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
IS - 1
SP - 9
EP - 41
AB - We show the change of coordinates that maps the maximally symmetric $(2,3,5)$-distribution given by solutions to the $k=\frac{2}{3}$ and $k=\frac{3}{2}$ generalised Chazy equation to the flat Cartan distribution. This establishes the local equivalence between the maximally symmetric $k=\frac{2}{3}$ and $k=\frac{3}{2}$ generalised Chazy distribution and the flat Cartan or Hilbert-Cartan distribution. We give the set of vector fields parametrised by solutions to the $k=\frac{2}{3}$ and $k=\frac{3}{2}$ generalised Chazy equation and the corresponding Ricci-flat conformal scale that bracket-generate to give the split real form of $\mathfrak {g}_2$.
LA - eng
KW - (2; 3; 5)-distributions; generalised Chazy equation
UR - http://eudml.org/doc/299899
ER -
References
top- Ablowitz, M.J., Chakravarty, S., Halburd, R., 10.4310/AJM.1998.v2.n4.a1, Asian J. Math. 2 (1998), 1–6. (1998) MR1734122DOI10.4310/AJM.1998.v2.n4.a1
- Ablowitz, M.J., Chakravarty, S., Halburd, R., 10.1111/1467-9590.00121, Stud. Appl. Math. 103 (1999), 75–88. (1999) MR1697568DOI10.1111/1467-9590.00121
- An, D., Nurowski, P., 10.1007/s00220-013-1839-2, Comm. Math. Phys. 326 (2) (2014), 393–414. (2014) Zbl1296.53100MR3165459DOI10.1007/s00220-013-1839-2
- An, D., Nurowski, P., 10.1016/j.geomphys.2018.01.009, J. Geom. Phys. 126 (2018), 93–100. (2018) MR3766469DOI10.1016/j.geomphys.2018.01.009
- Baez, J.C., Huerta, J., 10.1090/S0002-9947-2014-05977-1, Trans. Amer. Math. Soc. 366 (10) (2014), 5257–5293. (2014) MR3240924DOI10.1090/S0002-9947-2014-05977-1
- Bor, G., Montgomery, R., 10.4171/lem/55-1-8, Enseign. Math. (2) 55 (1–2) (2009), 157–196. (2009) Zbl1251.70008MR2541507DOI10.4171/lem/55-1-8
- Cartan, E., Sur la structure des groupes simples finis et continus, C.R. Acad. Sci. Paris 116 (1893), 784–786. (1893)
- Cartan, E., 10.24033/asens.618, Ann. Sci. Éc. Norm. Supér. (3) 27 (1910), 109–192. (1910) MR1509120DOI10.24033/asens.618
- Chazy, J., Sur les équations différentielles dont l’intégrale générale est uniforme et admet des singularités essentielles mobiles, C.R. Acad. Sci. Paris 149 (1909), 563–565. (1909)
- Chazy, J., 10.1007/BF02393131, Acta Math. 34 (1911), 317–385. (1911) MR1555070DOI10.1007/BF02393131
- Clarkson, P.A., Olver, P.J., 10.1006/jdeq.1996.0008, J. Differential Equations 124 (1) (1996), 225–246. (1996) MR1368067DOI10.1006/jdeq.1996.0008
- Doubrov, B., Kruglikov, B., 10.1016/j.difgeo.2014.06.008, Differential Geom. Appl. 35 (suppl.) (2014), 314–322. (2014) MR3254311DOI10.1016/j.difgeo.2014.06.008
- Engel, F., Sur un group simple à quatorze paramètres, C.R. Acad. Sci. Paris 116 (1893), 786–788. (1893)
- Engel, F., Zwei merkwürdige Gruppen des Raums von fünf Dimensionen, Jahresbericht der Deutschen Mathematiker-Vereinigung 8 (1900), 196–198. (1900)
- Halphen, G.H., 10.1007/BF02422456, Acta Math. 3 (1883), 325–380, doi:10.1007/BF02422456. (1883) MR1554628DOI10.1007/BF02422456
- Krichever, I.M., Generalized elliptic genera and Baker-Akhiezer functions, Mat. Zametki 47 (2) (1990), 34–45 (Transl. Math. Notes 47, no. 1–2, (1990), 132–142). (1990) MR1048541
- Maier, R.S., Lamé polynomials, hyperelliptic reductions and Lamé band structure, Philos. Trans. Roy. Soc. A 366 (2008), 1115–1153. (2008) MR2377687
- Nurowski, P., Differential equations and conformal structures, J. Geom. Phys. 55 (2005), 19–49. (2005) Zbl1082.53024MR2157414
- Randall, M., Local equivalence of some maximally symmetric -distributions I, arxiv:2108.04599.
- Randall, M., Flat (2,3,5)-distributions and Chazy’s equations, SIGMA 12 (2016), 029. (2016) MR3475620
- Randall, M., Automorphisms and transformations of solutions to the generalised Chazy equation for various parameters, J. Differential Equations 268 (12) (2020), 7998–8025. (2020) MR4079026
- Randall, M., Schwarz triangle functions and duality for certain parameters of the generalised Chazy equation, New Zealand J. Math. 50 (2020), 181–205. (2020) MR4216442
- Randall, M., Automorphism of solutions to Ramanujan’s differential equations and other results, Kyushu J. Math. 75 (1) (2021), 77–94. (2021) MR4272372
- Randall, M., Nurowski’s conformal class of a maximally symmetric (2,3,5)-distribution and its Ricci-flat representatives, J. Nonlinear Math. Phys. 28 (1) (2021), 1–13. (2021) MR4250810
- Randall, M., A Monge normal form for the rolling distribution, Proc. Amer. Math. Soc. 151 (2) (2023), 853–863. (2023) MR4520032
- Randall, M., Local equivalence of some maximally symmetric rolling distributions and SU(2) Pfaffian systems, Hokkaido Math. J. 52 (1) (2023), 97–128. (2023) MR4612637
- Strazzullo, F., Symmetry Analysis of General Rank-3 Pfaffian Systems in Five Variables, Ph.D. thesis, Utah State University, 2009. (2009) MR2717829
- Whittaker, E.T., Watson, G.N., A Course of Modern Analysis, 4th ed., Cambridge Mathematical Library, Cambridge University Press, 1996. (1996) Zbl0951.30002MR1424469
- Willse, T., Highly symmetric 2-plane fields on 5-manifolds and Heisenberg 5-group holonomy, Differential Geom. Appl. 33 (suppl.) (2014), 81–111. (2014) MR3159952
- Willse, T., Cartan’s incomplete classification and an explicit ambient metric of holonomy , Eur. J. Math. 4 (2) (2018), 622–638. (2018) MR3799160
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.