Positive periodic solutions to super-linear second-order ODEs

Jiří Šremr

Czechoslovak Mathematical Journal (2025)

  • Issue: 1, page 257-275
  • ISSN: 0011-4642

Abstract

top
We study the existence and uniqueness of a positive solution to the problem u ' ' = p ( t ) u + q ( t , u ) u + f ( t ) ; u ( 0 ) = u ( ω ) , u ' ( 0 ) = u ' ( ω ) with a super-linear nonlinearity and a nontrivial forcing term f . To prove our main results, we combine maximum and anti-maximum principles together with the lower/upper functions method. We also show a possible physical motivation for the study of such a kind of periodic problems and we compare the results obtained with the facts well known for the corresponding autonomous case.

How to cite

top

Šremr, Jiří. "Positive periodic solutions to super-linear second-order ODEs." Czechoslovak Mathematical Journal (2025): 257-275. <http://eudml.org/doc/299901>.

@article{Šremr2025,
abstract = {We study the existence and uniqueness of a positive solution to the problem \[ u^\{\prime \prime \}=p(t)u+q(t,u)u+f(t);\quad u(0)=u(\omega ),\ u^\{\prime \}(0)=u^\{\prime \}(\omega ) \] with a super-linear nonlinearity and a nontrivial forcing term $f$. To prove our main results, we combine maximum and anti-maximum principles together with the lower/upper functions method. We also show a possible physical motivation for the study of such a kind of periodic problems and we compare the results obtained with the facts well known for the corresponding autonomous case.},
author = {Šremr, Jiří},
journal = {Czechoslovak Mathematical Journal},
keywords = {second-order differential equation; super-linearity; positive solution; existence; uniqueness},
language = {eng},
number = {1},
pages = {257-275},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Positive periodic solutions to super-linear second-order ODEs},
url = {http://eudml.org/doc/299901},
year = {2025},
}

TY - JOUR
AU - Šremr, Jiří
TI - Positive periodic solutions to super-linear second-order ODEs
JO - Czechoslovak Mathematical Journal
PY - 2025
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 257
EP - 275
AB - We study the existence and uniqueness of a positive solution to the problem \[ u^{\prime \prime }=p(t)u+q(t,u)u+f(t);\quad u(0)=u(\omega ),\ u^{\prime }(0)=u^{\prime }(\omega ) \] with a super-linear nonlinearity and a nontrivial forcing term $f$. To prove our main results, we combine maximum and anti-maximum principles together with the lower/upper functions method. We also show a possible physical motivation for the study of such a kind of periodic problems and we compare the results obtained with the facts well known for the corresponding autonomous case.
LA - eng
KW - second-order differential equation; super-linearity; positive solution; existence; uniqueness
UR - http://eudml.org/doc/299901
ER -

References

top
  1. Cabada, A., Cid, J. Á., López-Somoza, L., Maximum Principles for the Hill's Equation, Academic Press, London (2018). (2018) Zbl1393.34003MR3751358
  2. Chen, H., Li, Y., 10.1090/S0002-9939-07-09024-7, Proc. Am. Math. Soc. 135 (2007), 3925-3932. (2007) Zbl1166.34313MR2341942DOI10.1090/S0002-9939-07-09024-7
  3. Chen, H., Li, Y., 10.1088/0951-7715/21/11/001, Nonlinearity 21 (2008), 2485-2503. (2008) Zbl1159.34033MR2448227DOI10.1088/0951-7715/21/11/001
  4. Coster, C. De, Habets, P., 10.1016/s0076-5392(06)x8055-4, Mathematics in Science and Engineering 205. Elsevier, Amsterdam (2006). (2006) Zbl1330.34009MR2225284DOI10.1016/s0076-5392(06)x8055-4
  5. Fabry, C., Mawhin, J., Nkashama, M. N., 10.1112/blms/18.2.173, Bull. Lond. Math. Soc. 18 (1986), 173-180. (1986) Zbl0586.34038MR0818822DOI10.1112/blms/18.2.173
  6. Fonda, A., 10.1007/978-3-319-47090-0, Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser, Cham (2016). (2016) Zbl1364.34004MR3585909DOI10.1007/978-3-319-47090-0
  7. Graef, J. R., Kong, L., Wang, H., 10.1016/j.jde.2008.06.012, J. Differ. Equations 245 (2008), 1185-1197. (2008) Zbl1203.34028MR2436827DOI10.1016/j.jde.2008.06.012
  8. Grossinho, M. R., Sanchez, L., 10.1017/S000497270001011X, Bull. Aust. Math. Soc. 34 (1986), 253-265. (1986) Zbl0592.34028MR0854571DOI10.1017/S000497270001011X
  9. Liang, S., 10.1007/s12346-018-0296-x, Qual. Theory Dyn. Syst. 18 (2019), 477-493. (2019) Zbl1472.34077MR3982750DOI10.1007/s12346-018-0296-x
  10. Lomtatidze, A., Theorems on differential inequalities and periodic boundary value problem for second-order ordinary differential equations, Mem. Differ. Equ. Math. Phys. 67 (2016), 1-129. (2016) Zbl1352.34033MR3472904
  11. Lomtatidze, A., Šremr, J., 10.1016/j.nonrwa.2017.09.001, Nonlinear Anal., Real World Appl. 40 (2018), 215-242. (2018) Zbl1396.34024MR3718982DOI10.1016/j.nonrwa.2017.09.001
  12. Šremr, J., 10.14232/ejqtde.2021.1.62, Electron. J. Qual. Theory Differ. Equ. 2021 (2021), Article ID 62, 33 pages. (2021) Zbl1488.34248MR4389331DOI10.14232/ejqtde.2021.1.62
  13. Šremr, J., 10.1515/gmj-2021-2117, Georgian Math. J. 29 (2022), 139-152. (2022) Zbl1490.34049MR4373259DOI10.1515/gmj-2021-2117
  14. Torres, P. J., 10.1016/S0022-0396(02)00152-3, J. Differ. Equations 190 (2003), 643-662. (2003) Zbl1032.34040MR1970045DOI10.1016/S0022-0396(02)00152-3
  15. Zamora, M., 10.1002/mana.201400122, Math. Nachr. 290 (2017), 1113-1118. (2017) Zbl1368.34039MR3652218DOI10.1002/mana.201400122

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.