Positive periodic solutions to super-linear second-order ODEs
Czechoslovak Mathematical Journal (2025)
- Issue: 1, page 257-275
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topŠremr, Jiří. "Positive periodic solutions to super-linear second-order ODEs." Czechoslovak Mathematical Journal (2025): 257-275. <http://eudml.org/doc/299901>.
@article{Šremr2025,
abstract = {We study the existence and uniqueness of a positive solution to the problem \[ u^\{\prime \prime \}=p(t)u+q(t,u)u+f(t);\quad u(0)=u(\omega ),\ u^\{\prime \}(0)=u^\{\prime \}(\omega ) \]
with a super-linear nonlinearity and a nontrivial forcing term $f$. To prove our main results, we combine maximum and anti-maximum principles together with the lower/upper functions method. We also show a possible physical motivation for the study of such a kind of periodic problems and we compare the results obtained with the facts well known for the corresponding autonomous case.},
author = {Šremr, Jiří},
journal = {Czechoslovak Mathematical Journal},
keywords = {second-order differential equation; super-linearity; positive solution; existence; uniqueness},
language = {eng},
number = {1},
pages = {257-275},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Positive periodic solutions to super-linear second-order ODEs},
url = {http://eudml.org/doc/299901},
year = {2025},
}
TY - JOUR
AU - Šremr, Jiří
TI - Positive periodic solutions to super-linear second-order ODEs
JO - Czechoslovak Mathematical Journal
PY - 2025
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 257
EP - 275
AB - We study the existence and uniqueness of a positive solution to the problem \[ u^{\prime \prime }=p(t)u+q(t,u)u+f(t);\quad u(0)=u(\omega ),\ u^{\prime }(0)=u^{\prime }(\omega ) \]
with a super-linear nonlinearity and a nontrivial forcing term $f$. To prove our main results, we combine maximum and anti-maximum principles together with the lower/upper functions method. We also show a possible physical motivation for the study of such a kind of periodic problems and we compare the results obtained with the facts well known for the corresponding autonomous case.
LA - eng
KW - second-order differential equation; super-linearity; positive solution; existence; uniqueness
UR - http://eudml.org/doc/299901
ER -
References
top- Cabada, A., Cid, J. Á., López-Somoza, L., Maximum Principles for the Hill's Equation, Academic Press, London (2018). (2018) Zbl1393.34003MR3751358
- Chen, H., Li, Y., 10.1090/S0002-9939-07-09024-7, Proc. Am. Math. Soc. 135 (2007), 3925-3932. (2007) Zbl1166.34313MR2341942DOI10.1090/S0002-9939-07-09024-7
- Chen, H., Li, Y., 10.1088/0951-7715/21/11/001, Nonlinearity 21 (2008), 2485-2503. (2008) Zbl1159.34033MR2448227DOI10.1088/0951-7715/21/11/001
- Coster, C. De, Habets, P., 10.1016/s0076-5392(06)x8055-4, Mathematics in Science and Engineering 205. Elsevier, Amsterdam (2006). (2006) Zbl1330.34009MR2225284DOI10.1016/s0076-5392(06)x8055-4
- Fabry, C., Mawhin, J., Nkashama, M. N., 10.1112/blms/18.2.173, Bull. Lond. Math. Soc. 18 (1986), 173-180. (1986) Zbl0586.34038MR0818822DOI10.1112/blms/18.2.173
- Fonda, A., 10.1007/978-3-319-47090-0, Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser, Cham (2016). (2016) Zbl1364.34004MR3585909DOI10.1007/978-3-319-47090-0
- Graef, J. R., Kong, L., Wang, H., 10.1016/j.jde.2008.06.012, J. Differ. Equations 245 (2008), 1185-1197. (2008) Zbl1203.34028MR2436827DOI10.1016/j.jde.2008.06.012
- Grossinho, M. R., Sanchez, L., 10.1017/S000497270001011X, Bull. Aust. Math. Soc. 34 (1986), 253-265. (1986) Zbl0592.34028MR0854571DOI10.1017/S000497270001011X
- Liang, S., 10.1007/s12346-018-0296-x, Qual. Theory Dyn. Syst. 18 (2019), 477-493. (2019) Zbl1472.34077MR3982750DOI10.1007/s12346-018-0296-x
- Lomtatidze, A., Theorems on differential inequalities and periodic boundary value problem for second-order ordinary differential equations, Mem. Differ. Equ. Math. Phys. 67 (2016), 1-129. (2016) Zbl1352.34033MR3472904
- Lomtatidze, A., Šremr, J., 10.1016/j.nonrwa.2017.09.001, Nonlinear Anal., Real World Appl. 40 (2018), 215-242. (2018) Zbl1396.34024MR3718982DOI10.1016/j.nonrwa.2017.09.001
- Šremr, J., 10.14232/ejqtde.2021.1.62, Electron. J. Qual. Theory Differ. Equ. 2021 (2021), Article ID 62, 33 pages. (2021) Zbl1488.34248MR4389331DOI10.14232/ejqtde.2021.1.62
- Šremr, J., 10.1515/gmj-2021-2117, Georgian Math. J. 29 (2022), 139-152. (2022) Zbl1490.34049MR4373259DOI10.1515/gmj-2021-2117
- Torres, P. J., 10.1016/S0022-0396(02)00152-3, J. Differ. Equations 190 (2003), 643-662. (2003) Zbl1032.34040MR1970045DOI10.1016/S0022-0396(02)00152-3
- Zamora, M., 10.1002/mana.201400122, Math. Nachr. 290 (2017), 1113-1118. (2017) Zbl1368.34039MR3652218DOI10.1002/mana.201400122
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.