On almost periodicity defined via non-absolutely convergent integrals
Dariusz Bugajewski; Adam Nawrocki
Czechoslovak Mathematical Journal (2025)
- Issue: 1, page 193-214
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBugajewski, Dariusz, and Nawrocki, Adam. "On almost periodicity defined via non-absolutely convergent integrals." Czechoslovak Mathematical Journal (2025): 193-214. <http://eudml.org/doc/299907>.
@article{Bugajewski2025,
abstract = {We investigate some properties of the normed space of almost periodic functions which are defined via the Denjoy-Perron (or equivalently, Henstock-Kurzweil) integral. In particular, we prove that this space is barrelled while it is not complete. We also prove that a linear differential equation with the non-homogenous term being an almost periodic function of such type, possesses a solution in the class under consideration.},
author = {Bugajewski, Dariusz, Nawrocki, Adam},
journal = {Czechoslovak Mathematical Journal},
keywords = {almost periodic function in view of the Lebesgue measure; barrelled space; Bohr almost periodic function; Denjoy-Bochner almost periodic function; Denjoy-Perron integral; Henstock-Kurzweil integral; linear differential equation},
language = {eng},
number = {1},
pages = {193-214},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On almost periodicity defined via non-absolutely convergent integrals},
url = {http://eudml.org/doc/299907},
year = {2025},
}
TY - JOUR
AU - Bugajewski, Dariusz
AU - Nawrocki, Adam
TI - On almost periodicity defined via non-absolutely convergent integrals
JO - Czechoslovak Mathematical Journal
PY - 2025
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 193
EP - 214
AB - We investigate some properties of the normed space of almost periodic functions which are defined via the Denjoy-Perron (or equivalently, Henstock-Kurzweil) integral. In particular, we prove that this space is barrelled while it is not complete. We also prove that a linear differential equation with the non-homogenous term being an almost periodic function of such type, possesses a solution in the class under consideration.
LA - eng
KW - almost periodic function in view of the Lebesgue measure; barrelled space; Bohr almost periodic function; Denjoy-Bochner almost periodic function; Denjoy-Perron integral; Henstock-Kurzweil integral; linear differential equation
UR - http://eudml.org/doc/299907
ER -
References
top- Alexiewicz, A., 10.4064/cm-1-4-289-293, Colloq. Math. 1 (1948), 289-293. (1948) Zbl0037.32302MR0030120DOI10.4064/cm-1-4-289-293
- Andres, J., Bersani, A. M., Grande, R. F., Hierarchy of almost-periodic function spaces, Rend. Mat. Appl., VII. Ser. 26 (2006), 121-188. (2006) Zbl1133.42002MR2275292
- Borkowski, M., Bugajewska, D., 10.1515/ms-2017-0082, Math. Slovaca 68 (2018), 77-88. (2018) Zbl1473.45008MR3764318DOI10.1515/ms-2017-0082
- Borkowski, M., Bugajewska, D., Kasprzak, P., Selected Topics in Nonlinear Analysis, Lecture Notes in Nonlinear Analysis 19. Nicolaus Copernicus University, Juliusz Schauder Center for Nonlinear Studies, Toruń (2021). (2021) Zbl1506.47001MR4404311
- Bruno, G., Pankov, A., 10.4171/ZAA/955, Z. Anal. Anwend. 19 (2000), 359-367. (2000) Zbl0972.47036MR1768997DOI10.4171/ZAA/955
- Bugajewski, D., On the structure of solution sets of differential and integral equations, and the Perron integral, Proceedings of the Prague Mathematical Conference 1996 Icaris, Prague (1996), 47-51. (1996) Zbl0966.34041MR1703455
- Bugajewski, D., On the Volterra integral equation and the Henstock-Kurzweil integral, Math. Pannonica 9 (1998), 141-145. (1998) Zbl0906.45005MR1620430
- Bugajewski, D., Kasprzak, K., Nawrocki, A., 10.1007/s10231-022-01270-2, Ann. Mat. Pura Appl. (4) 202 (2023), 1033-1050. (2023) Zbl1512.42008MR4576930DOI10.1007/s10231-022-01270-2
- Bugajewski, D., Nawrocki, A., 10.5186/aasfm.2017.4250, Ann. Acad. Sci. Fenn., Math. 42 (2017), 809-836. (2017) Zbl1372.42003MR3701650DOI10.5186/aasfm.2017.4250
- Bugajewski, D., Szufla, S., On the Aronszajn property for differential equations and the Denjoy integral, Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 25 (1995), 61-69. (1995) Zbl0854.34005MR1384852
- Burkill, H., 10.1112/plms/s2-53.1.32, Proc. Lond. Math. Soc., II. Ser. 53 (1951), 32-42. (1951) Zbl0042.31901MR0043251DOI10.1112/plms/s2-53.1.32
- Chew, T. S., Flordeliza, F., 10.57262/die/1371225020, Differ. Integral Equ. 4 (1991), 861-868. (1991) Zbl0733.34004MR1108065DOI10.57262/die/1371225020
- Henstock, R., 10.1112/plms/s3-11.1.402, Proc. Lond. Math. Soc., III. Ser. 11 (1961), 402-418. (1961) Zbl0099.27402MR0132147DOI10.1112/plms/s3-11.1.402
- Horváth, J., Topological Vector Spaces and Distributions. Vol. I, Addison-Wesley, Reading (1966). (1966) Zbl0143.15101MR0205028
- Kasprzak, P., Nawrocki, A., Signerska-Rynkowska, J., 10.1016/j.jde.2017.10.025, J. Differ. Equations 264 (2018), 2495-2537. (2018) Zbl1380.42006MR3737845DOI10.1016/j.jde.2017.10.025
- Kurzweil, J., 10.21136/CMJ.1957.100258, Czech. Math. J. 7 (1957), 418-449. (1957) Zbl0090.30002MR0111875DOI10.21136/CMJ.1957.100258
- Kurzweil, J., 10.1142/7907, Series in Real Analysis 11. World Scientific, Hackensack (2012). (2012) Zbl1248.34001MR2906899DOI10.1142/7907
- Meyer, Y., Quasicrystals, almost periodic patterns, mean-periodic functions and irregular sampling, Afr. Diaspora J. Math. 13 (2012), 1-45. (2012) Zbl1242.52026MR2876415
- Pal, B. K., Mukhopadhyay, S. N., 10.1017/S1446788700022047, J. Aust. Math. Soc., Ser. A 37 (1984), 205-222. (1984) Zbl0552.42005MR0749501DOI10.1017/S1446788700022047
- Pych-Taberska, P., Approximation of almost periodic functions integrable in the Denjoy-Perron sense, Function Spaces Teubner-Texte zur Mathematik 120. B. G. Teubner, Stuttgart (1991), 186-196. (1991) Zbl0757.41029MR1155174
- Pych-Taberska, P., On some almost periodic convolutions, Funct. Approximatio, Comment. Math. 20 (1992), 65-77. (1992) Zbl0848.42009MR1201717
- Saks, S., Theory of the Integral, Monografie Matematyczne 7. G. E. Stechert & Co., New York (1937). (1937) Zbl0017.30004MR0167578
- Schwabik, Š., 10.57262/die/1370032239, Differ. Integral Equ. 6 (1993), 863-882. (1993) Zbl0784.34006MR1222306DOI10.57262/die/1370032239
- Stoiński, S., Almost periodic function in the Lebesgue measure, Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 34 (1994), 189-198. (1994) Zbl0835.42009MR1325086
- Stoiński, S., Almost Periodic Functions, Scientific Publisher AMU, Poznań (2008), Polish. (2008)
- Swartz, C., 10.1142/4361, World Scientific, Singapore (2001). (2001) Zbl0982.26006MR1845270DOI10.1142/4361
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.