On almost periodicity defined via non-absolutely convergent integrals

Dariusz Bugajewski; Adam Nawrocki

Czechoslovak Mathematical Journal (2025)

  • Issue: 1, page 193-214
  • ISSN: 0011-4642

Abstract

top
We investigate some properties of the normed space of almost periodic functions which are defined via the Denjoy-Perron (or equivalently, Henstock-Kurzweil) integral. In particular, we prove that this space is barrelled while it is not complete. We also prove that a linear differential equation with the non-homogenous term being an almost periodic function of such type, possesses a solution in the class under consideration.

How to cite

top

Bugajewski, Dariusz, and Nawrocki, Adam. "On almost periodicity defined via non-absolutely convergent integrals." Czechoslovak Mathematical Journal (2025): 193-214. <http://eudml.org/doc/299907>.

@article{Bugajewski2025,
abstract = {We investigate some properties of the normed space of almost periodic functions which are defined via the Denjoy-Perron (or equivalently, Henstock-Kurzweil) integral. In particular, we prove that this space is barrelled while it is not complete. We also prove that a linear differential equation with the non-homogenous term being an almost periodic function of such type, possesses a solution in the class under consideration.},
author = {Bugajewski, Dariusz, Nawrocki, Adam},
journal = {Czechoslovak Mathematical Journal},
keywords = {almost periodic function in view of the Lebesgue measure; barrelled space; Bohr almost periodic function; Denjoy-Bochner almost periodic function; Denjoy-Perron integral; Henstock-Kurzweil integral; linear differential equation},
language = {eng},
number = {1},
pages = {193-214},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On almost periodicity defined via non-absolutely convergent integrals},
url = {http://eudml.org/doc/299907},
year = {2025},
}

TY - JOUR
AU - Bugajewski, Dariusz
AU - Nawrocki, Adam
TI - On almost periodicity defined via non-absolutely convergent integrals
JO - Czechoslovak Mathematical Journal
PY - 2025
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 193
EP - 214
AB - We investigate some properties of the normed space of almost periodic functions which are defined via the Denjoy-Perron (or equivalently, Henstock-Kurzweil) integral. In particular, we prove that this space is barrelled while it is not complete. We also prove that a linear differential equation with the non-homogenous term being an almost periodic function of such type, possesses a solution in the class under consideration.
LA - eng
KW - almost periodic function in view of the Lebesgue measure; barrelled space; Bohr almost periodic function; Denjoy-Bochner almost periodic function; Denjoy-Perron integral; Henstock-Kurzweil integral; linear differential equation
UR - http://eudml.org/doc/299907
ER -

References

top
  1. Alexiewicz, A., 10.4064/cm-1-4-289-293, Colloq. Math. 1 (1948), 289-293. (1948) Zbl0037.32302MR0030120DOI10.4064/cm-1-4-289-293
  2. Andres, J., Bersani, A. M., Grande, R. F., Hierarchy of almost-periodic function spaces, Rend. Mat. Appl., VII. Ser. 26 (2006), 121-188. (2006) Zbl1133.42002MR2275292
  3. Borkowski, M., Bugajewska, D., 10.1515/ms-2017-0082, Math. Slovaca 68 (2018), 77-88. (2018) Zbl1473.45008MR3764318DOI10.1515/ms-2017-0082
  4. Borkowski, M., Bugajewska, D., Kasprzak, P., Selected Topics in Nonlinear Analysis, Lecture Notes in Nonlinear Analysis 19. Nicolaus Copernicus University, Juliusz Schauder Center for Nonlinear Studies, Toruń (2021). (2021) Zbl1506.47001MR4404311
  5. Bruno, G., Pankov, A., 10.4171/ZAA/955, Z. Anal. Anwend. 19 (2000), 359-367. (2000) Zbl0972.47036MR1768997DOI10.4171/ZAA/955
  6. Bugajewski, D., On the structure of solution sets of differential and integral equations, and the Perron integral, Proceedings of the Prague Mathematical Conference 1996 Icaris, Prague (1996), 47-51. (1996) Zbl0966.34041MR1703455
  7. Bugajewski, D., On the Volterra integral equation and the Henstock-Kurzweil integral, Math. Pannonica 9 (1998), 141-145. (1998) Zbl0906.45005MR1620430
  8. Bugajewski, D., Kasprzak, K., Nawrocki, A., 10.1007/s10231-022-01270-2, Ann. Mat. Pura Appl. (4) 202 (2023), 1033-1050. (2023) Zbl1512.42008MR4576930DOI10.1007/s10231-022-01270-2
  9. Bugajewski, D., Nawrocki, A., 10.5186/aasfm.2017.4250, Ann. Acad. Sci. Fenn., Math. 42 (2017), 809-836. (2017) Zbl1372.42003MR3701650DOI10.5186/aasfm.2017.4250
  10. Bugajewski, D., Szufla, S., On the Aronszajn property for differential equations and the Denjoy integral, Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 25 (1995), 61-69. (1995) Zbl0854.34005MR1384852
  11. Burkill, H., 10.1112/plms/s2-53.1.32, Proc. Lond. Math. Soc., II. Ser. 53 (1951), 32-42. (1951) Zbl0042.31901MR0043251DOI10.1112/plms/s2-53.1.32
  12. Chew, T. S., Flordeliza, F., 10.57262/die/1371225020, Differ. Integral Equ. 4 (1991), 861-868. (1991) Zbl0733.34004MR1108065DOI10.57262/die/1371225020
  13. Henstock, R., 10.1112/plms/s3-11.1.402, Proc. Lond. Math. Soc., III. Ser. 11 (1961), 402-418. (1961) Zbl0099.27402MR0132147DOI10.1112/plms/s3-11.1.402
  14. Horváth, J., Topological Vector Spaces and Distributions. Vol. I, Addison-Wesley, Reading (1966). (1966) Zbl0143.15101MR0205028
  15. Kasprzak, P., Nawrocki, A., Signerska-Rynkowska, J., 10.1016/j.jde.2017.10.025, J. Differ. Equations 264 (2018), 2495-2537. (2018) Zbl1380.42006MR3737845DOI10.1016/j.jde.2017.10.025
  16. Kurzweil, J., 10.21136/CMJ.1957.100258, Czech. Math. J. 7 (1957), 418-449. (1957) Zbl0090.30002MR0111875DOI10.21136/CMJ.1957.100258
  17. Kurzweil, J., 10.1142/7907, Series in Real Analysis 11. World Scientific, Hackensack (2012). (2012) Zbl1248.34001MR2906899DOI10.1142/7907
  18. Meyer, Y., Quasicrystals, almost periodic patterns, mean-periodic functions and irregular sampling, Afr. Diaspora J. Math. 13 (2012), 1-45. (2012) Zbl1242.52026MR2876415
  19. Pal, B. K., Mukhopadhyay, S. N., 10.1017/S1446788700022047, J. Aust. Math. Soc., Ser. A 37 (1984), 205-222. (1984) Zbl0552.42005MR0749501DOI10.1017/S1446788700022047
  20. Pych-Taberska, P., Approximation of almost periodic functions integrable in the Denjoy-Perron sense, Function Spaces Teubner-Texte zur Mathematik 120. B. G. Teubner, Stuttgart (1991), 186-196. (1991) Zbl0757.41029MR1155174
  21. Pych-Taberska, P., On some almost periodic convolutions, Funct. Approximatio, Comment. Math. 20 (1992), 65-77. (1992) Zbl0848.42009MR1201717
  22. Saks, S., Theory of the Integral, Monografie Matematyczne 7. G. E. Stechert & Co., New York (1937). (1937) Zbl0017.30004MR0167578
  23. Schwabik, Š., 10.57262/die/1370032239, Differ. Integral Equ. 6 (1993), 863-882. (1993) Zbl0784.34006MR1222306DOI10.57262/die/1370032239
  24. Stoiński, S., Almost periodic function in the Lebesgue measure, Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 34 (1994), 189-198. (1994) Zbl0835.42009MR1325086
  25. Stoiński, S., Almost Periodic Functions, Scientific Publisher AMU, Poznań (2008), Polish. (2008) 
  26. Swartz, C., 10.1142/4361, World Scientific, Singapore (2001). (2001) Zbl0982.26006MR1845270DOI10.1142/4361

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.