Theory of the integral

Stanisław Saks

  • 1937

Abstract

top
CONTENTS PREFACE...................... III ERRATA.......................... VII CHAPTER I. The integral in an abstract space § 1. Introduction.................................. 1 § 2. Terminology and notation...................... 4 § 3. Abstract space X.............................. 6 § 4. Additive classes of sets...................... 7 § 5. Additive functions of a set................... 8 § 6. The variations of an additive function........ 10 § 7. Measurable functions.......................... 12 § 8. Elementary operations on measurable functions... 14 § 9. Measure....................................... 16 § 10. Integral..................................... 19 § 11. Fundamental properties of the integral....... 21 § 12. Integration of sequences of functions........ 26 § 13. Absolutely continuous additive functions of a set..... 30 § 14. The Lebesgue decomposition of an additive function.... 32 § 15. Change of measure.................................... 36 CHAPTER II. Carathéodory measure § 1. Preliminary remarks.................................. 39 § 2. Metrical space....................................... 39 § 3. Continuous and semi-continuous functions............. 42 § 4. Carathéodory measure.................................. 43 § 5. The operation (A)..................................... 47 § 6. Regular sets.......................................... 50 § 7. Borel sets............................................ 51 § 8. Length of a set....................................... 53 § 9. Complete space........................................ 54 CHAPTER III. Functions of bounded variation and the Lebesgue-Stieltjes integral § 1. Euclidean spaces....................................... 56 § 2. Intervals and figures.................................. 57 § 3. Functions of an interval............................... 59 § 4. Functions of an interval that are additive and of bounded variation.... 61 § 5. Lebesgue-Stieltjes integral. Lebesgue integral and measure.......... 64 § 6. Measure defined by a non-negative additive function of an interval..... 67 § 7. Theorems of Lusin and Vitali-Carathéodory.............................. 72 § 8. Theorem of Fubini...................................................... 76 § 9. Fubini's theorem in abstract spaces.................................... 82 § 10. Geometrical definition of the Lebesgue-Stieltjes integral............. 88 § 11. Translations of sets.................................................. 90 § 12. Absolutely continuous functions of an interval....................... 93 § 13. Functions of a real variable.......................................... 96 § 14. Integration by parts.................................................. 102 CHAPTER IV. Derivation of additive functions of a set and of an interval § 1. Introduction.......................................... 105 § 2. Derivates of functions of a set and of an interval.......................................... 106 § 3. Vitali's Covering Theorem.......................................... 109 § 4. Theorems on measurability of derivates.......................................... 112 § 5. Lebesgue's Theorem.......................................... 114 § 6. Derivation of the indefinite integral.......................................... 117 § 7. The Lebesgue decomposition.......................................... 118 § 8. Rectifiable curves.......................................... 121 § 9. De la Vallée Poussin's theorem.......................................... 125 § 10. Points of density for a set.......................................... 128 § 11. Ward's theorems on derivation of additive functions of an interval.......................................... 133 § 12. A theorem of Hardy-Littlewood.......................................... 142 § 13. Strong derivation of the indefinite integral.......................................... 147 § 14. Symmetrical derivates.......................................... 149 § 15. Derivation in abstract spaces.......................................... 152 § 16. Torus space.......................................... 157 CHAPTER V. Area of a surface z=F(x,y) § 1. Preliminary remarks.......................................... 163 § 2. Area of a surface.......................................... 164 § 3. The Burkill integral.......................................... 165 § 4. Bounded variation and absolute continuity for functions of two variables.......................................... 169 § 5. The expressions of de Geöcze.......................................... 171 § 6. Integrals of the expressions of de Geöcze.......................................... 174 7. Radò's Theorem.......................................... 177 § 8. Tonelli's Theorem.......................................... 181 CHAPTER VI. Major and minor functions § 1. Introduction.......................................... 186 § 2. Derivation with respect to normal sequences of nets.......................................... 188 § 3. Major and minor functions.......................................... 190 § 4. Derivation with respect to binary sequences of nets.......................................... 191 § 5. Applications to functions of a complex variable.......................................... 195 § 6. The Perron integral.......................................... 201 § 7. Derivates of functions of a real variable.......................................... 203 § 8. The Perron-Stieltjes integral.......................................... 207 CHAPTER VII. Functions of generalized bounded variation § 1. Introduction.......................................... 213 § 2. A theorem of Lusin.......................................... 215 § 3. Approximate limits and derivatives.......................................... 218 § 4. Functions VB and VBG.......................................... 221 § 5. Functions AC and ACG.......................................... 223 § 6. Lusin's condition (N).......................................... 224 § 7. Functions VB* and VBG*.......................................... 228 § 8. Functions AC* and ACG*.......................................... 231 § 9. Definitions of Denjoy-Lusin.......................................... 233 § 10. Criteria for the classes of functions VBG*, ACG*. VBG and ACG....... 234 CHAPTER VIII. Denjoy integrals § 1. Descriptive definition of the Denjoy integrals..................... 241 § 2. Integration by parts.......................................... 244 § 3. Theorem of Hake-Alexandroff-Looman.......................................... 247 § 4. General notion of integral.......................................... 254 § 5. Constructive definition of the Denjoy integrals.......................................... 256 CHAPTER IX. Derivates of functions of one or two real variables § 1. Some elementary theorems.......................................... 260 § 2. Contingent of a set.......................................... 262 § 3. Fundamental theorems on the contingents of plane sets.......................................... 264 § 4. Denjoy's theorems.......................................... 269 § 5. Relative derivates.......................................... 272 § 6. The Banach conditions (T1) and (T2).......................................... 277 § 7. Three theorems of Banach.......................................... 282 § 8. Superpositions of absolutely continuous functions.......................................... 286 § 9. The condition (D).......................................... 290 § 10. A theorem of Denjoy-Khintchine on approximate derivates.......................................... 295 § 11. Approximate partial derivates of functions of two variables.......................................... 297 § 12. Total and approximate differentials.......................................... 300 § 13. Fundamental theorems on the contingent of a set in space.......................................... 304 § 14. Extreme differentials.......................................... 309 NOTE I by S. Banach. On Haar's measure.......................................... 314 NOTE II by S.Banach. The Lebesgue integral in abstract spaces.......................................... 320 BIBLIOGRAPHY GENERAL INDEX.......................................... 341 NOTATIONS.......................................... 344

How to cite

top

Stanisław Saks. Theory of the integral. 1937. <http://eudml.org/doc/219302>.

@book{StanisławSaks1937,
abstract = {CONTENTS PREFACE...................... III ERRATA.......................... VII CHAPTER I. The integral in an abstract space § 1. Introduction.................................. 1 § 2. Terminology and notation...................... 4 § 3. Abstract space X.............................. 6 § 4. Additive classes of sets...................... 7 § 5. Additive functions of a set................... 8 § 6. The variations of an additive function........ 10 § 7. Measurable functions.......................... 12 § 8. Elementary operations on measurable functions... 14 § 9. Measure....................................... 16 § 10. Integral..................................... 19 § 11. Fundamental properties of the integral....... 21 § 12. Integration of sequences of functions........ 26 § 13. Absolutely continuous additive functions of a set..... 30 § 14. The Lebesgue decomposition of an additive function.... 32 § 15. Change of measure.................................... 36 CHAPTER II. Carathéodory measure § 1. Preliminary remarks.................................. 39 § 2. Metrical space....................................... 39 § 3. Continuous and semi-continuous functions............. 42 § 4. Carathéodory measure.................................. 43 § 5. The operation (A)..................................... 47 § 6. Regular sets.......................................... 50 § 7. Borel sets............................................ 51 § 8. Length of a set....................................... 53 § 9. Complete space........................................ 54 CHAPTER III. Functions of bounded variation and the Lebesgue-Stieltjes integral § 1. Euclidean spaces....................................... 56 § 2. Intervals and figures.................................. 57 § 3. Functions of an interval............................... 59 § 4. Functions of an interval that are additive and of bounded variation.... 61 § 5. Lebesgue-Stieltjes integral. Lebesgue integral and measure.......... 64 § 6. Measure defined by a non-negative additive function of an interval..... 67 § 7. Theorems of Lusin and Vitali-Carathéodory.............................. 72 § 8. Theorem of Fubini...................................................... 76 § 9. Fubini's theorem in abstract spaces.................................... 82 § 10. Geometrical definition of the Lebesgue-Stieltjes integral............. 88 § 11. Translations of sets.................................................. 90 § 12. Absolutely continuous functions of an interval....................... 93 § 13. Functions of a real variable.......................................... 96 § 14. Integration by parts.................................................. 102 CHAPTER IV. Derivation of additive functions of a set and of an interval § 1. Introduction.......................................... 105 § 2. Derivates of functions of a set and of an interval.......................................... 106 § 3. Vitali's Covering Theorem.......................................... 109 § 4. Theorems on measurability of derivates.......................................... 112 § 5. Lebesgue's Theorem.......................................... 114 § 6. Derivation of the indefinite integral.......................................... 117 § 7. The Lebesgue decomposition.......................................... 118 § 8. Rectifiable curves.......................................... 121 § 9. De la Vallée Poussin's theorem.......................................... 125 § 10. Points of density for a set.......................................... 128 § 11. Ward's theorems on derivation of additive functions of an interval.......................................... 133 § 12. A theorem of Hardy-Littlewood.......................................... 142 § 13. Strong derivation of the indefinite integral.......................................... 147 § 14. Symmetrical derivates.......................................... 149 § 15. Derivation in abstract spaces.......................................... 152 § 16. Torus space.......................................... 157 CHAPTER V. Area of a surface z=F(x,y) § 1. Preliminary remarks.......................................... 163 § 2. Area of a surface.......................................... 164 § 3. The Burkill integral.......................................... 165 § 4. Bounded variation and absolute continuity for functions of two variables.......................................... 169 § 5. The expressions of de Geöcze.......................................... 171 § 6. Integrals of the expressions of de Geöcze.......................................... 174 7. Radò's Theorem.......................................... 177 § 8. Tonelli's Theorem.......................................... 181 CHAPTER VI. Major and minor functions § 1. Introduction.......................................... 186 § 2. Derivation with respect to normal sequences of nets.......................................... 188 § 3. Major and minor functions.......................................... 190 § 4. Derivation with respect to binary sequences of nets.......................................... 191 § 5. Applications to functions of a complex variable.......................................... 195 § 6. The Perron integral.......................................... 201 § 7. Derivates of functions of a real variable.......................................... 203 § 8. The Perron-Stieltjes integral.......................................... 207 CHAPTER VII. Functions of generalized bounded variation § 1. Introduction.......................................... 213 § 2. A theorem of Lusin.......................................... 215 § 3. Approximate limits and derivatives.......................................... 218 § 4. Functions VB and VBG.......................................... 221 § 5. Functions AC and ACG.......................................... 223 § 6. Lusin's condition (N).......................................... 224 § 7. Functions VB* and VBG*.......................................... 228 § 8. Functions AC* and ACG*.......................................... 231 § 9. Definitions of Denjoy-Lusin.......................................... 233 § 10. Criteria for the classes of functions VBG*, ACG*. VBG and ACG....... 234 CHAPTER VIII. Denjoy integrals § 1. Descriptive definition of the Denjoy integrals..................... 241 § 2. Integration by parts.......................................... 244 § 3. Theorem of Hake-Alexandroff-Looman.......................................... 247 § 4. General notion of integral.......................................... 254 § 5. Constructive definition of the Denjoy integrals.......................................... 256 CHAPTER IX. Derivates of functions of one or two real variables § 1. Some elementary theorems.......................................... 260 § 2. Contingent of a set.......................................... 262 § 3. Fundamental theorems on the contingents of plane sets.......................................... 264 § 4. Denjoy's theorems.......................................... 269 § 5. Relative derivates.......................................... 272 § 6. The Banach conditions (T1) and (T2).......................................... 277 § 7. Three theorems of Banach.......................................... 282 § 8. Superpositions of absolutely continuous functions.......................................... 286 § 9. The condition (D).......................................... 290 § 10. A theorem of Denjoy-Khintchine on approximate derivates.......................................... 295 § 11. Approximate partial derivates of functions of two variables.......................................... 297 § 12. Total and approximate differentials.......................................... 300 § 13. Fundamental theorems on the contingent of a set in space.......................................... 304 § 14. Extreme differentials.......................................... 309 NOTE I by S. Banach. On Haar's measure.......................................... 314 NOTE II by S.Banach. The Lebesgue integral in abstract spaces.......................................... 320 BIBLIOGRAPHY GENERAL INDEX.......................................... 341 NOTATIONS.......................................... 344},
author = {Stanisław Saks},
keywords = {Set theory, real functions},
language = {eng},
title = {Theory of the integral},
url = {http://eudml.org/doc/219302},
year = {1937},
}

TY - BOOK
AU - Stanisław Saks
TI - Theory of the integral
PY - 1937
AB - CONTENTS PREFACE...................... III ERRATA.......................... VII CHAPTER I. The integral in an abstract space § 1. Introduction.................................. 1 § 2. Terminology and notation...................... 4 § 3. Abstract space X.............................. 6 § 4. Additive classes of sets...................... 7 § 5. Additive functions of a set................... 8 § 6. The variations of an additive function........ 10 § 7. Measurable functions.......................... 12 § 8. Elementary operations on measurable functions... 14 § 9. Measure....................................... 16 § 10. Integral..................................... 19 § 11. Fundamental properties of the integral....... 21 § 12. Integration of sequences of functions........ 26 § 13. Absolutely continuous additive functions of a set..... 30 § 14. The Lebesgue decomposition of an additive function.... 32 § 15. Change of measure.................................... 36 CHAPTER II. Carathéodory measure § 1. Preliminary remarks.................................. 39 § 2. Metrical space....................................... 39 § 3. Continuous and semi-continuous functions............. 42 § 4. Carathéodory measure.................................. 43 § 5. The operation (A)..................................... 47 § 6. Regular sets.......................................... 50 § 7. Borel sets............................................ 51 § 8. Length of a set....................................... 53 § 9. Complete space........................................ 54 CHAPTER III. Functions of bounded variation and the Lebesgue-Stieltjes integral § 1. Euclidean spaces....................................... 56 § 2. Intervals and figures.................................. 57 § 3. Functions of an interval............................... 59 § 4. Functions of an interval that are additive and of bounded variation.... 61 § 5. Lebesgue-Stieltjes integral. Lebesgue integral and measure.......... 64 § 6. Measure defined by a non-negative additive function of an interval..... 67 § 7. Theorems of Lusin and Vitali-Carathéodory.............................. 72 § 8. Theorem of Fubini...................................................... 76 § 9. Fubini's theorem in abstract spaces.................................... 82 § 10. Geometrical definition of the Lebesgue-Stieltjes integral............. 88 § 11. Translations of sets.................................................. 90 § 12. Absolutely continuous functions of an interval....................... 93 § 13. Functions of a real variable.......................................... 96 § 14. Integration by parts.................................................. 102 CHAPTER IV. Derivation of additive functions of a set and of an interval § 1. Introduction.......................................... 105 § 2. Derivates of functions of a set and of an interval.......................................... 106 § 3. Vitali's Covering Theorem.......................................... 109 § 4. Theorems on measurability of derivates.......................................... 112 § 5. Lebesgue's Theorem.......................................... 114 § 6. Derivation of the indefinite integral.......................................... 117 § 7. The Lebesgue decomposition.......................................... 118 § 8. Rectifiable curves.......................................... 121 § 9. De la Vallée Poussin's theorem.......................................... 125 § 10. Points of density for a set.......................................... 128 § 11. Ward's theorems on derivation of additive functions of an interval.......................................... 133 § 12. A theorem of Hardy-Littlewood.......................................... 142 § 13. Strong derivation of the indefinite integral.......................................... 147 § 14. Symmetrical derivates.......................................... 149 § 15. Derivation in abstract spaces.......................................... 152 § 16. Torus space.......................................... 157 CHAPTER V. Area of a surface z=F(x,y) § 1. Preliminary remarks.......................................... 163 § 2. Area of a surface.......................................... 164 § 3. The Burkill integral.......................................... 165 § 4. Bounded variation and absolute continuity for functions of two variables.......................................... 169 § 5. The expressions of de Geöcze.......................................... 171 § 6. Integrals of the expressions of de Geöcze.......................................... 174 7. Radò's Theorem.......................................... 177 § 8. Tonelli's Theorem.......................................... 181 CHAPTER VI. Major and minor functions § 1. Introduction.......................................... 186 § 2. Derivation with respect to normal sequences of nets.......................................... 188 § 3. Major and minor functions.......................................... 190 § 4. Derivation with respect to binary sequences of nets.......................................... 191 § 5. Applications to functions of a complex variable.......................................... 195 § 6. The Perron integral.......................................... 201 § 7. Derivates of functions of a real variable.......................................... 203 § 8. The Perron-Stieltjes integral.......................................... 207 CHAPTER VII. Functions of generalized bounded variation § 1. Introduction.......................................... 213 § 2. A theorem of Lusin.......................................... 215 § 3. Approximate limits and derivatives.......................................... 218 § 4. Functions VB and VBG.......................................... 221 § 5. Functions AC and ACG.......................................... 223 § 6. Lusin's condition (N).......................................... 224 § 7. Functions VB* and VBG*.......................................... 228 § 8. Functions AC* and ACG*.......................................... 231 § 9. Definitions of Denjoy-Lusin.......................................... 233 § 10. Criteria for the classes of functions VBG*, ACG*. VBG and ACG....... 234 CHAPTER VIII. Denjoy integrals § 1. Descriptive definition of the Denjoy integrals..................... 241 § 2. Integration by parts.......................................... 244 § 3. Theorem of Hake-Alexandroff-Looman.......................................... 247 § 4. General notion of integral.......................................... 254 § 5. Constructive definition of the Denjoy integrals.......................................... 256 CHAPTER IX. Derivates of functions of one or two real variables § 1. Some elementary theorems.......................................... 260 § 2. Contingent of a set.......................................... 262 § 3. Fundamental theorems on the contingents of plane sets.......................................... 264 § 4. Denjoy's theorems.......................................... 269 § 5. Relative derivates.......................................... 272 § 6. The Banach conditions (T1) and (T2).......................................... 277 § 7. Three theorems of Banach.......................................... 282 § 8. Superpositions of absolutely continuous functions.......................................... 286 § 9. The condition (D).......................................... 290 § 10. A theorem of Denjoy-Khintchine on approximate derivates.......................................... 295 § 11. Approximate partial derivates of functions of two variables.......................................... 297 § 12. Total and approximate differentials.......................................... 300 § 13. Fundamental theorems on the contingent of a set in space.......................................... 304 § 14. Extreme differentials.......................................... 309 NOTE I by S. Banach. On Haar's measure.......................................... 314 NOTE II by S.Banach. The Lebesgue integral in abstract spaces.......................................... 320 BIBLIOGRAPHY GENERAL INDEX.......................................... 341 NOTATIONS.......................................... 344
LA - eng
KW - Set theory, real functions
UR - http://eudml.org/doc/219302
ER -

Citations in EuDML Documents

top
  1. Paul-André Meyer, Théorèmes fondamentaux du calcul des probabilités
  2. Martin Zerner, Diverses conséquences d'une formule de Green
  3. A. M. Bruckner, M. Rosenfeld, A theorem on approximate directional derivatives
  4. Serban Teodor Belinschi, A note on regularity for free convolutions
  5. W. J. Trjitzinsky, La régularité moyenne dans la théorie métrique
  6. Jan Malý, Luděk Zajíček, Approximate differentiation: Jarník points
  7. W. J. Trjitzinsky, Théorie métrique dans les espaces où il y a une mesure
  8. Giselle A. Monteiro, On Kurzweil-Stieltjes equiintegrability and generalized BV functions
  9. Malkhaz Ashordia, On the necessary and sufficient conditions for the convergence of the difference schemes for the general boundary value problem for the linear systems of ordinary differential equations
  10. Luděk Zajíček, Obecná teorie derivování funkcí a měr na katedře matematické analýzy MFF UK

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.