Theoretical analysis for 1 - 2 minimization with partial support information

Haifeng Li; Leiyan Guo

Applications of Mathematics (2025)

  • Issue: 1, page 125-148
  • ISSN: 0862-7940

Abstract

top
We investigate the recovery of k -sparse signals using the 1 - 2 minimization model with prior support set information. The prior support set information, which is believed to contain the indices of nonzero signal elements, significantly enhances the performance of compressive recovery by improving accuracy, efficiency, reducing complexity, expanding applicability, and enhancing robustness. We assume k -sparse signals 𝐱 with the prior support T which is composed of g true indices and b wrong indices, i.e., | T | = g + b k . First, we derive a new condition based on RIP of order 2 α ( α = k - g ) to guarantee signal recovery via 1 - 2 minimization with partial support information. Second, we also derive the high order RIP with t α for some t 3 to guarantee signal recovery via 1 - 2 minimization with partial support information.

How to cite

top

Li, Haifeng, and Guo, Leiyan. "Theoretical analysis for $\ell _{1}$-$\ell _{2}$ minimization with partial support information." Applications of Mathematics (2025): 125-148. <http://eudml.org/doc/299909>.

@article{Li2025,
abstract = {We investigate the recovery of $k$-sparse signals using the $\ell _\{1\}$-$\ell _\{2\}$ minimization model with prior support set information. The prior support set information, which is believed to contain the indices of nonzero signal elements, significantly enhances the performance of compressive recovery by improving accuracy, efficiency, reducing complexity, expanding applicability, and enhancing robustness. We assume $k$-sparse signals $\{\bf x\}$ with the prior support $T$ which is composed of $g$ true indices and $b$ wrong indices, i.e., $|T|=g+b\le k$. First, we derive a new condition based on RIP of order $2\alpha $$(\alpha =k-g)$ to guarantee signal recovery via $\ell _\{1\}$-$\ell _\{2\}$ minimization with partial support information. Second, we also derive the high order RIP with $t\alpha $ for some $t\ge 3$ to guarantee signal recovery via $\ell _\{1\}$-$\ell _\{2\}$ minimization with partial support information.},
author = {Li, Haifeng, Guo, Leiyan},
journal = {Applications of Mathematics},
keywords = {compressed sensing; sparse optimization; algorithm},
language = {eng},
number = {1},
pages = {125-148},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Theoretical analysis for $\ell _\{1\}$-$\ell _\{2\}$ minimization with partial support information},
url = {http://eudml.org/doc/299909},
year = {2025},
}

TY - JOUR
AU - Li, Haifeng
AU - Guo, Leiyan
TI - Theoretical analysis for $\ell _{1}$-$\ell _{2}$ minimization with partial support information
JO - Applications of Mathematics
PY - 2025
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 125
EP - 148
AB - We investigate the recovery of $k$-sparse signals using the $\ell _{1}$-$\ell _{2}$ minimization model with prior support set information. The prior support set information, which is believed to contain the indices of nonzero signal elements, significantly enhances the performance of compressive recovery by improving accuracy, efficiency, reducing complexity, expanding applicability, and enhancing robustness. We assume $k$-sparse signals ${\bf x}$ with the prior support $T$ which is composed of $g$ true indices and $b$ wrong indices, i.e., $|T|=g+b\le k$. First, we derive a new condition based on RIP of order $2\alpha $$(\alpha =k-g)$ to guarantee signal recovery via $\ell _{1}$-$\ell _{2}$ minimization with partial support information. Second, we also derive the high order RIP with $t\alpha $ for some $t\ge 3$ to guarantee signal recovery via $\ell _{1}$-$\ell _{2}$ minimization with partial support information.
LA - eng
KW - compressed sensing; sparse optimization; algorithm
UR - http://eudml.org/doc/299909
ER -

References

top
  1. Bi, N., Tan, J., Tang, W.-S., 10.1142/S0219530521500068, Anal. Appl., Singap. 19 (2021), 1019-1031. (2021) Zbl1492.94029MR4328764DOI10.1142/S0219530521500068
  2. Bi, N., Tang, W.-S., 10.1016/j.acha.2021.09.003, Appl. Comput. Harmon. Anal. 56 (2022), 337-350. (2022) Zbl1485.90095MR4324183DOI10.1016/j.acha.2021.09.003
  3. Cai, T., Wang, L., Xu, G., 10.1109/TSP.2009.2034936, IEEE Trans. Signal Process. 58 (2010), 1300-1308. (2010) Zbl1392.94117MR2730209DOI10.1109/TSP.2009.2034936
  4. Cai, T., Zhang, A., 10.1109/TSP.2013.2259164, IEEE Trans. Signal Process. 61 (2013), 3279-3290. (2013) Zbl1393.94185MR3070321DOI10.1109/TSP.2013.2259164
  5. Candès, E. J., 10.1016/j.crma.2008.03.014, C. R., Math., Acad. Sci. Paris 346 (2008), 589-592. (2008) Zbl1153.94002MR2412803DOI10.1016/j.crma.2008.03.014
  6. Candès, E. J., Plan, Y., 10.1109/TIT.2011.2111771, IEEE Trans. Inf. Theory 57 (2011), 2342-2359. (2011) Zbl1366.90160MR2809094DOI10.1109/TIT.2011.2111771
  7. Candès, E. J., Tao, T., 10.1109/TIT.2005.858979, IEEE Trans. Inf. Theory 51 (2005), 4203-4215. (2005) Zbl1264.94121MR2243152DOI10.1109/TIT.2005.858979
  8. Donoho, D. L., Elad, M., Temlyakov, V. N., 10.1109/TIT.2005.860430, IEEE Trans. Inf. Theory 52 (2006), 6-18. (2006) Zbl1288.94017MR2237332DOI10.1109/TIT.2005.860430
  9. Donoho, D. L., Huo, X., 10.1109/18.959265, IEEE Trans. Inf. Theory 47 (2001), 2845-2862. (2001) Zbl1019.94503MR1872845DOI10.1109/18.959265
  10. Foucart, S., Rauhut, H., 10.1007/978-0-8176-4948-7, Applied and Numerical Harmonic Analysis. Birkhäuser, New York (2013). (2013) Zbl1315.94002MR3100033DOI10.1007/978-0-8176-4948-7
  11. Ge, H., Chen, W., 10.1007/s00034-018-01022-9, Circuits Syst. Signal Process. 38 (2019), 3295-3320. (2019) MR3898369DOI10.1007/s00034-018-01022-9
  12. Ge, H., Chen, W., Ng, M. K., 10.1137/20M136517X, SIAM J. Imaging Sci. 14 (2021), 530-557. (2021) Zbl1474.94041MR4252074DOI10.1137/20M136517X
  13. He, Z., He, H., Liu, X., Wen, J., 10.1109/LSP.2022.3158839, IEEE Signal Process. Lett. 29 (2022), 907-911. (2022) DOI10.1109/LSP.2022.3158839
  14. Herzet, C., Soussen, C., Idier, J., Gribonval, R., 10.1109/TIT.2013.2278179, IEEE Trans. Inf. Theory 59 (2013), 7509-7524. (2013) Zbl1364.94128MR3124657DOI10.1109/TIT.2013.2278179
  15. Jacques, L., 10.1016/j.sigpro.2010.05.025, Signal Process. 90 (2010), 3308-3312. (2010) Zbl1197.94063DOI10.1016/j.sigpro.2010.05.025
  16. Li, P., Chen, W., 10.1016/j.cam.2018.07.019, J. Comput. Appl. Math. 346 (2019), 399-417. (2019) Zbl1405.94025MR3864169DOI10.1016/j.cam.2018.07.019
  17. Ma, T.-H., Lou, Y., Huang, T.-Z., 10.1137/16M1098929, SIAM J. Imaging Sci. 10 (2017), 1346-1380. (2017) Zbl1397.94021MR3687849DOI10.1137/16M1098929
  18. Mo, Q., Li, S., 10.1016/j.acha.2011.04.005, Appl. Comput. Harmon. Anal. 31 (2011), 460-468. (2011) Zbl1231.94027MR2836035DOI10.1016/j.acha.2011.04.005
  19. Scarlett, J., Evans, J. S., Dey, S., 10.1109/TSP.2012.2225051, IEEE Trans. Signal Process. 61 (2013), 427-439. (2013) Zbl1393.94759MR3009136DOI10.1109/TSP.2012.2225051
  20. Borries, R. von, Miosso, C. J., Potes, C., 10.1109/CAMSAP.2007.4497980, 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing IEEE, Philadelphia (2007), 121-124. (2007) DOI10.1109/CAMSAP.2007.4497980
  21. Wang, W., Wang, J., 10.1049/el.2019.2205, Electron. Lett. 55 (2019), 1199-1201. (2019) DOI10.1049/el.2019.2205
  22. Wen, J., Weng, J., Tong, C., Ren, C., Zhou, Z., 10.1109/TVT.2019.2919612, IEEE Trans. Vehicular Technol. 68 (2019), 6847-6854. (2019) DOI10.1109/TVT.2019.2919612
  23. Yin, P., Lou, Y., He, Q., Xin, J., 10.1137/140952363, SIAM J. Sci. Comput. 37 (2015), A536--A563. (2015) Zbl1316.90037MR3315229DOI10.1137/140952363
  24. Zhang, J., Zhang, S., Meng, X., 10.1049/el.2019.3859, Electron. Lett. 56 (2020), 405-408. (2020) DOI10.1049/el.2019.3859

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.