Linearization technique for oscillation of perturbed half-linear differential equations
Archivum Mathematicum (2025)
- Issue: 1, page 43-59
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topNaito, Manabu. "Linearization technique for oscillation of perturbed half-linear differential equations." Archivum Mathematicum (2025): 43-59. <http://eudml.org/doc/299914>.
@article{Naito2025,
abstract = {It is shown that oscillation of perturbed second order half-linear differential equations can be derived from oscillation of second order linear differential equations associated with modified Riccati equations. In the main result of the present paper, some of technical assumptions in the known results of this type are removed.},
author = {Naito, Manabu},
journal = {Archivum Mathematicum},
keywords = {half-linear differential equation; oscillation; modified Riccati equation},
language = {eng},
number = {1},
pages = {43-59},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Linearization technique for oscillation of perturbed half-linear differential equations},
url = {http://eudml.org/doc/299914},
year = {2025},
}
TY - JOUR
AU - Naito, Manabu
TI - Linearization technique for oscillation of perturbed half-linear differential equations
JO - Archivum Mathematicum
PY - 2025
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
IS - 1
SP - 43
EP - 59
AB - It is shown that oscillation of perturbed second order half-linear differential equations can be derived from oscillation of second order linear differential equations associated with modified Riccati equations. In the main result of the present paper, some of technical assumptions in the known results of this type are removed.
LA - eng
KW - half-linear differential equation; oscillation; modified Riccati equation
UR - http://eudml.org/doc/299914
ER -
References
top- Došlá, Z., Došlý, O., Principal solution of half-linear differential equation: limit and integral characterization, Electron. J. Qual. Theory Differ. Equ. 2008 (2008), 14 pp., paper No. 7. (2008) MR2509168
- Došlý, O., 10.1016/j.jmaa.2005.10.051, J. Math. Anal. Appl. 323 (2006), 426–440. (2006) MR2262216DOI10.1016/j.jmaa.2005.10.051
- Došlý, O., 10.14232/ejqtde.2016.8.10, Electron. J. Qual. Theory Differ. Equ. 2016 (2016), 14 pp., paper No. 10. (2016) MR3631082DOI10.14232/ejqtde.2016.8.10
- Došlý, O., Elbert, Á., Integral characterization of the principal solution of half-linear second order differential equations, Studia Sci. Math. Hungar. 36 (2000), 455–469. (2000) MR1798750
- Došlý, O., Fišnarová, S., 10.1016/j.na.2010.07.049, Nonlinear Anal. 73 (2010), 3756–3766. (2010) Zbl1207.34041MR2728552DOI10.1016/j.na.2010.07.049
- Došlý, O., Fišnarová, S., 10.1155/2011/182827, Abstr. Appl. Anal. 2011 (2011), 16 pp., Article ID 182827. (2011) MR2771241DOI10.1155/2011/182827
- Došlý, O., Lomtatidze, A., 10.32917/hmj/1166642300, Hiroshima Math. J. 36 (2006), 203–219. (2006) MR2259737DOI10.32917/hmj/1166642300
- Došlý, O., Řehák, P., Half-Linear Differential Equations, North-Holland Mathematics Studies, vol. 202, Elsevier, Amsterdam, 2005. (2005) MR2158903
- Došlý, O., Řezníčková, J., Regular half-linear second order differential equations, Arch. Math. (Brno) 39 (2003), 233–245. (2003) MR2010724
- Dosoudilová, M., Lomtatidze, A., Šremr, J., Oscillatory properties of solutions to certain two-dimensional systems of non-linear ordinary differential equations, Nonlinear Anal. 120 (2015), 57–75. (2015) Zbl1336.34053MR3348046
- Elbert, Á., Schneider, A., 10.1007/BF03322512, Results Math. 37 (2000), 56–83. (2000) Zbl0958.34029MR1742294DOI10.1007/BF03322512
- Luey, S., Usami, H., 10.32917/h2022005, Hiroshima Math. J. 53 (2023), 171–189. (2023) MR4612154DOI10.32917/h2022005
- Naito, M., 10.7494/OpMath.2021.41.1.71, Opuscula Math. 41 (2021), 71–94. (2021) MR4302442DOI10.7494/OpMath.2021.41.1.71
- Naito, M., 10.7494/OpMath.2023.43.2.221, Opuscula Math. 43 (2023), 221–246. (2023) MR4567780DOI10.7494/OpMath.2023.43.2.221
- Naito, M., 10.11650/tjm/221001, Taiwanese J. Math. 27 (2023), 291–319. (2023) MR4563521DOI10.11650/tjm/221001
- Naito, M., Oscillation criteria for perturbed half-linear differential equations, Electron. J. Qual. Theory Differ. Equ. 2024 (2024), 18 pp., paper No. 38. (2024) MR4782772
- Naito, M., Usami, H., 10.1016/j.jde.2022.02.025, J. Differential Equations 318 (2022), 359–383. (2022) MR4387287DOI10.1016/j.jde.2022.02.025
- Řehák, P., Nonlinear Poincaré–Perron theorem, Appl. Math. Lett. 121 (2021), 7 pp., Article ID 107425. (2021) MR4268643
- Řehák, P., Half-linear differential equations: Regular variation, principal solutions, and asymptotic classes, Electron. J. Qual. Theory Differ. Equ. 2023 (2023), 28 pp., paper No. 1. (2023) MR4541736
- Zlámal, M., Oscillation criterions, Časopis Pěst. Mat. Fys. 75 (1950), 213–218. (1950) MR0042578
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.