Linearization technique for oscillation of perturbed half-linear differential equations

Manabu Naito

Archivum Mathematicum (2025)

  • Issue: 1, page 43-59
  • ISSN: 0044-8753

Abstract

top
It is shown that oscillation of perturbed second order half-linear differential equations can be derived from oscillation of second order linear differential equations associated with modified Riccati equations. In the main result of the present paper, some of technical assumptions in the known results of this type are removed.

How to cite

top

Naito, Manabu. "Linearization technique for oscillation of perturbed half-linear differential equations." Archivum Mathematicum (2025): 43-59. <http://eudml.org/doc/299914>.

@article{Naito2025,
abstract = {It is shown that oscillation of perturbed second order half-linear differential equations can be derived from oscillation of second order linear differential equations associated with modified Riccati equations. In the main result of the present paper, some of technical assumptions in the known results of this type are removed.},
author = {Naito, Manabu},
journal = {Archivum Mathematicum},
keywords = {half-linear differential equation; oscillation; modified Riccati equation},
language = {eng},
number = {1},
pages = {43-59},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Linearization technique for oscillation of perturbed half-linear differential equations},
url = {http://eudml.org/doc/299914},
year = {2025},
}

TY - JOUR
AU - Naito, Manabu
TI - Linearization technique for oscillation of perturbed half-linear differential equations
JO - Archivum Mathematicum
PY - 2025
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
IS - 1
SP - 43
EP - 59
AB - It is shown that oscillation of perturbed second order half-linear differential equations can be derived from oscillation of second order linear differential equations associated with modified Riccati equations. In the main result of the present paper, some of technical assumptions in the known results of this type are removed.
LA - eng
KW - half-linear differential equation; oscillation; modified Riccati equation
UR - http://eudml.org/doc/299914
ER -

References

top
  1. Došlá, Z., Došlý, O., Principal solution of half-linear differential equation: limit and integral characterization, Electron. J. Qual. Theory Differ. Equ. 2008 (2008), 14 pp., paper No. 7. (2008) MR2509168
  2. Došlý, O., 10.1016/j.jmaa.2005.10.051, J. Math. Anal. Appl. 323 (2006), 426–440. (2006) MR2262216DOI10.1016/j.jmaa.2005.10.051
  3. Došlý, O., 10.14232/ejqtde.2016.8.10, Electron. J. Qual. Theory Differ. Equ. 2016 (2016), 14 pp., paper No. 10. (2016) MR3631082DOI10.14232/ejqtde.2016.8.10
  4. Došlý, O., Elbert, Á., Integral characterization of the principal solution of half-linear second order differential equations, Studia Sci. Math. Hungar. 36 (2000), 455–469. (2000) MR1798750
  5. Došlý, O., Fišnarová, S., 10.1016/j.na.2010.07.049, Nonlinear Anal. 73 (2010), 3756–3766. (2010) Zbl1207.34041MR2728552DOI10.1016/j.na.2010.07.049
  6. Došlý, O., Fišnarová, S., 10.1155/2011/182827, Abstr. Appl. Anal. 2011 (2011), 16 pp., Article ID 182827. (2011) MR2771241DOI10.1155/2011/182827
  7. Došlý, O., Lomtatidze, A., 10.32917/hmj/1166642300, Hiroshima Math. J. 36 (2006), 203–219. (2006) MR2259737DOI10.32917/hmj/1166642300
  8. Došlý, O., Řehák, P., Half-Linear Differential Equations, North-Holland Mathematics Studies, vol. 202, Elsevier, Amsterdam, 2005. (2005) MR2158903
  9. Došlý, O., Řezníčková, J., Regular half-linear second order differential equations, Arch. Math. (Brno) 39 (2003), 233–245. (2003) MR2010724
  10. Dosoudilová, M., Lomtatidze, A., Šremr, J., Oscillatory properties of solutions to certain two-dimensional systems of non-linear ordinary differential equations, Nonlinear Anal. 120 (2015), 57–75. (2015) Zbl1336.34053MR3348046
  11. Elbert, Á., Schneider, A., 10.1007/BF03322512, Results Math. 37 (2000), 56–83. (2000) Zbl0958.34029MR1742294DOI10.1007/BF03322512
  12. Luey, S., Usami, H., 10.32917/h2022005, Hiroshima Math. J. 53 (2023), 171–189. (2023) MR4612154DOI10.32917/h2022005
  13. Naito, M., 10.7494/OpMath.2021.41.1.71, Opuscula Math. 41 (2021), 71–94. (2021) MR4302442DOI10.7494/OpMath.2021.41.1.71
  14. Naito, M., 10.7494/OpMath.2023.43.2.221, Opuscula Math. 43 (2023), 221–246. (2023) MR4567780DOI10.7494/OpMath.2023.43.2.221
  15. Naito, M., 10.11650/tjm/221001, Taiwanese J. Math. 27 (2023), 291–319. (2023) MR4563521DOI10.11650/tjm/221001
  16. Naito, M., Oscillation criteria for perturbed half-linear differential equations, Electron. J. Qual. Theory Differ. Equ. 2024 (2024), 18 pp., paper No. 38. (2024) MR4782772
  17. Naito, M., Usami, H., 10.1016/j.jde.2022.02.025, J. Differential Equations 318 (2022), 359–383. (2022) MR4387287DOI10.1016/j.jde.2022.02.025
  18. Řehák, P., Nonlinear Poincaré–Perron theorem, Appl. Math. Lett. 121 (2021), 7 pp., Article ID 107425. (2021) MR4268643
  19. Řehák, P., Half-linear differential equations: Regular variation, principal solutions, and asymptotic classes, Electron. J. Qual. Theory Differ. Equ. 2023 (2023), 28 pp., paper No. 1. (2023) MR4541736
  20. Zlámal, M., Oscillation criterions, Časopis Pěst. Mat. Fys. 75 (1950), 213–218. (1950) MR0042578

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.