A necessary condition for HK-integrability of the Fourier sine transform function
Juan H. Arredondo; Manuel Bernal; Maria G. Morales
Czechoslovak Mathematical Journal (2025)
- Issue: 1, page 69-84
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topArredondo, Juan H., Bernal, Manuel, and Morales, Maria G.. "A necessary condition for HK-integrability of the Fourier sine transform function." Czechoslovak Mathematical Journal (2025): 69-84. <http://eudml.org/doc/299918>.
@article{Arredondo2025,
abstract = {The paper is concerned with integrability of the Fourier sine transform function when $f\in \{\rm BV\}_0(\mathbb \{R\} )$, where $\{\rm BV\}_0(\mathbb \{R\} )$ is the space of bounded variation functions vanishing at infinity. It is shown that for the Fourier sine transform function of $f$ to be integrable in the Henstock-Kurzweil sense, it is necessary that $f /x \in L^1(\mathbb \{R\})$. We prove that this condition is optimal through the theoretical scope of the Henstock-Kurzweil integration theory.},
author = {Arredondo, Juan H., Bernal, Manuel, Morales, Maria G.},
journal = {Czechoslovak Mathematical Journal},
keywords = {Fourier transform; Henstock-Kurzweil integral; bounded variation function},
language = {eng},
number = {1},
pages = {69-84},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A necessary condition for HK-integrability of the Fourier sine transform function},
url = {http://eudml.org/doc/299918},
year = {2025},
}
TY - JOUR
AU - Arredondo, Juan H.
AU - Bernal, Manuel
AU - Morales, Maria G.
TI - A necessary condition for HK-integrability of the Fourier sine transform function
JO - Czechoslovak Mathematical Journal
PY - 2025
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 69
EP - 84
AB - The paper is concerned with integrability of the Fourier sine transform function when $f\in {\rm BV}_0(\mathbb {R} )$, where ${\rm BV}_0(\mathbb {R} )$ is the space of bounded variation functions vanishing at infinity. It is shown that for the Fourier sine transform function of $f$ to be integrable in the Henstock-Kurzweil sense, it is necessary that $f /x \in L^1(\mathbb {R})$. We prove that this condition is optimal through the theoretical scope of the Henstock-Kurzweil integration theory.
LA - eng
KW - Fourier transform; Henstock-Kurzweil integral; bounded variation function
UR - http://eudml.org/doc/299918
ER -
References
top- Arredondo, J. H., Bernal, M., Morales, M. G., 10.3390/math8071199, Mathematics 8 (2020), Article ID 1199, 16 pages. (2020) DOI10.3390/math8071199
- Arredondo, J. H., Mendoza, F. J., Reyes, A., 10.3934/era.2018.25.005, Electron. Res. Announc. Math. Sci. 25 (2018), 36-47. (2018) Zbl1401.26019MR3810181DOI10.3934/era.2018.25.005
- Arredondo, J. H., Reyes, A., 10.33044/revuma.1911, Rev. Unión Mat. Argent. 62 (2021), 401-413. (2021) Zbl1487.42008MR4363338DOI10.33044/revuma.1911
- Bartle, R. G., 10.1090/gsm/032, Graduate Studies in Mathematics 32. AMS, Providence (2001). (2001) Zbl0968.26001MR1817647DOI10.1090/gsm/032
- Bell, R. J., 10.1016/B978-0-12-085150-8.X5001-3, Academic Press, New York (1972). (1972) DOI10.1016/B978-0-12-085150-8.X5001-3
- Bloomfield, P., 10.1002/0471722235, Wiley Series in Probability and Statistics: Applied Probability and Statistics. John Wiley & Sons, Chichester (2000). (2000) Zbl0994.62093MR1884963DOI10.1002/0471722235
- Bracewell, R. N., The Fourier Transform and Its Applications, McGraw-Hill, New York (2000). (2000) Zbl0561.42001MR0924577
- Chanda, B., Majumder, D. Dutta, Digital Image Processing and Analysis, PHI Learning, New Delhi (2011). (2011)
- Ferraro, J. R., Basile, L. J., 10.1016/C2009-0-22072-1, Academic Press, New York (1978). (1978) DOI10.1016/C2009-0-22072-1
- Folland, G. B., Real Analysis: Modern Techniques and Their Applications, Pure and Applied Mathematics. John Wiley & Sons, New York (1984). (1984) Zbl0549.28001MR0767633
- Folland, G. B., Fourier Analysis and Its Applications, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove (1992). (1992) Zbl0786.42001MR1145236
- Gordon, R. A., 10.1090/gsm/004, Graduate Studies in Mathematics 4. AMS, Providence (1994). (1994) Zbl0807.26004MR1288751DOI10.1090/gsm/004
- Gray, R. M., Goodman, J. W., 10.1007/978-1-4615-2359-8, The Kluwer International Series in Engineering and Computer Science 322. Kluwer Academic, Dordrecht (1995). (1995) Zbl0997.42500DOI10.1007/978-1-4615-2359-8
- Lee, P.-Y., 10.1142/0845, Series in Real Analysis 2. World Scientific, London (1989). (1989) Zbl0699.26004MR1050957DOI10.1142/0845
- Liflyand, E., 10.1134/S0001434616070087, Math. Notes 100 (2016), 93-99. (2016) Zbl1362.42013MR3588831DOI10.1134/S0001434616070087
- Liflyand, E., 10.1016/j.jmaa.2015.12.042, J. Math. Anal. Appl. 436 (2016), 1082-1101. (2016) Zbl1341.42009MR3446998DOI10.1016/j.jmaa.2015.12.042
- Liflyand, E., 10.1007/s00041-017-9530-1, J. Fourier Anal. Appl. 24 (2018), 525-544. (2018) Zbl1440.42019MR3776333DOI10.1007/s00041-017-9530-1
- Liflyand, E., 10.1007/978-3-030-04429-9, Applied and Numerical Harmonic Analysis. Birkhäuser, Cham (2019). (2019) Zbl1418.42001MR3929690DOI10.1007/978-3-030-04429-9
- McLeod, R. M., 10.5948/UPO9781614440208, The Carus Mathematical Monographs 20. Mathematical Association of America, Washington (1980). (1980) Zbl0486.26005MR0588510DOI10.5948/UPO9781614440208
- McShane, E. J., 10.1515/9781400877812, Princeton Mathematical Series 7. Princeton University Press, Princeton (1947). (1947) Zbl0033.05302MR0010606DOI10.1515/9781400877812
- Torres, F. J. Mendoza, Marcías, M. G. Morales, Reyna, J. A. Escamilla, Ruiz, J. H. Arredondo, 10.5373/jarpm.1458.052712, J. Adv. Res. Pure Math. 5 (2013), 33-46. (2013) MR3041342DOI10.5373/jarpm.1458.052712
- Monteiro, G. A., Slavík, A., Tvrdý, M., 10.1142/9432, Series in Real Analysis 15. World Scientific, Hackensack (2019). (2019) Zbl1437.28001MR3839599DOI10.1142/9432
- Morales, M. G., Arredondo, J. H., Mendoza, F. J., An extension of some properties for the Fourier transform operator on spaces, Rev. Unión Mat. Argent. 57 (2016), 85-94. (2016) Zbl1357.43001MR3583297
- Peters, T. M., (eds.), J. Williams, 10.1007/978-1-4612-0637-8, Applied and Numerical Harmonic Analysis. Birkhäuser, Basel (1998). (1998) Zbl0910.92022MR1634301DOI10.1007/978-1-4612-0637-8
- Pinsky, M. A., 10.1090/gsm/102, Brooks/Cole Series in Advanced Mathematics. Brooks/Cole, Pacific Grove (2002). (2002) Zbl1065.42001MR2100936DOI10.1090/gsm/102
- Rudin, W., Real and Complex Analysis, McGraw-Hill, New York (1987). (1987) Zbl0925.00005MR0924157
- Ruzhansky, M., Tikhonov, S., 10.1007/978-3-319-27466-9_1, Methods of Fourier Analysis and Approximation Theory Applied and Numerical Harmonic Analysis. Birkhäuser, Basel 2016 1-19. Zbl1343.42001MR3497695DOI10.1007/978-3-319-27466-9_1
- Sánchez-Perales, S., Torres, F. J. Mendoza, Reyna, J. A. Escamilla, 10.1155/2012/209462, Int. J. Math. Math. Sci. 2012 (2012), Article ID 209462, 11 pages. (2012) Zbl1253.44006MR2983789DOI10.1155/2012/209462
- Titchmarsh, E. C., Introduction to the Theory of Fourier Integrals, Clarendon Press, Oxford (1937). (1937) Zbl0017.40404MR0942661
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.