A necessary condition for HK-integrability of the Fourier sine transform function

Juan H. Arredondo; Manuel Bernal; Maria G. Morales

Czechoslovak Mathematical Journal (2025)

  • Issue: 1, page 69-84
  • ISSN: 0011-4642

Abstract

top
The paper is concerned with integrability of the Fourier sine transform function when f BV 0 ( ) , where BV 0 ( ) is the space of bounded variation functions vanishing at infinity. It is shown that for the Fourier sine transform function of f to be integrable in the Henstock-Kurzweil sense, it is necessary that f / x L 1 ( ) . We prove that this condition is optimal through the theoretical scope of the Henstock-Kurzweil integration theory.

How to cite

top

Arredondo, Juan H., Bernal, Manuel, and Morales, Maria G.. "A necessary condition for HK-integrability of the Fourier sine transform function." Czechoslovak Mathematical Journal (2025): 69-84. <http://eudml.org/doc/299918>.

@article{Arredondo2025,
abstract = {The paper is concerned with integrability of the Fourier sine transform function when $f\in \{\rm BV\}_0(\mathbb \{R\} )$, where $\{\rm BV\}_0(\mathbb \{R\} )$ is the space of bounded variation functions vanishing at infinity. It is shown that for the Fourier sine transform function of $f$ to be integrable in the Henstock-Kurzweil sense, it is necessary that $f /x \in L^1(\mathbb \{R\})$. We prove that this condition is optimal through the theoretical scope of the Henstock-Kurzweil integration theory.},
author = {Arredondo, Juan H., Bernal, Manuel, Morales, Maria G.},
journal = {Czechoslovak Mathematical Journal},
keywords = {Fourier transform; Henstock-Kurzweil integral; bounded variation function},
language = {eng},
number = {1},
pages = {69-84},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A necessary condition for HK-integrability of the Fourier sine transform function},
url = {http://eudml.org/doc/299918},
year = {2025},
}

TY - JOUR
AU - Arredondo, Juan H.
AU - Bernal, Manuel
AU - Morales, Maria G.
TI - A necessary condition for HK-integrability of the Fourier sine transform function
JO - Czechoslovak Mathematical Journal
PY - 2025
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 69
EP - 84
AB - The paper is concerned with integrability of the Fourier sine transform function when $f\in {\rm BV}_0(\mathbb {R} )$, where ${\rm BV}_0(\mathbb {R} )$ is the space of bounded variation functions vanishing at infinity. It is shown that for the Fourier sine transform function of $f$ to be integrable in the Henstock-Kurzweil sense, it is necessary that $f /x \in L^1(\mathbb {R})$. We prove that this condition is optimal through the theoretical scope of the Henstock-Kurzweil integration theory.
LA - eng
KW - Fourier transform; Henstock-Kurzweil integral; bounded variation function
UR - http://eudml.org/doc/299918
ER -

References

top
  1. Arredondo, J. H., Bernal, M., Morales, M. G., 10.3390/math8071199, Mathematics 8 (2020), Article ID 1199, 16 pages. (2020) DOI10.3390/math8071199
  2. Arredondo, J. H., Mendoza, F. J., Reyes, A., 10.3934/era.2018.25.005, Electron. Res. Announc. Math. Sci. 25 (2018), 36-47. (2018) Zbl1401.26019MR3810181DOI10.3934/era.2018.25.005
  3. Arredondo, J. H., Reyes, A., 10.33044/revuma.1911, Rev. Unión Mat. Argent. 62 (2021), 401-413. (2021) Zbl1487.42008MR4363338DOI10.33044/revuma.1911
  4. Bartle, R. G., 10.1090/gsm/032, Graduate Studies in Mathematics 32. AMS, Providence (2001). (2001) Zbl0968.26001MR1817647DOI10.1090/gsm/032
  5. Bell, R. J., 10.1016/B978-0-12-085150-8.X5001-3, Academic Press, New York (1972). (1972) DOI10.1016/B978-0-12-085150-8.X5001-3
  6. Bloomfield, P., 10.1002/0471722235, Wiley Series in Probability and Statistics: Applied Probability and Statistics. John Wiley & Sons, Chichester (2000). (2000) Zbl0994.62093MR1884963DOI10.1002/0471722235
  7. Bracewell, R. N., The Fourier Transform and Its Applications, McGraw-Hill, New York (2000). (2000) Zbl0561.42001MR0924577
  8. Chanda, B., Majumder, D. Dutta, Digital Image Processing and Analysis, PHI Learning, New Delhi (2011). (2011) 
  9. Ferraro, J. R., Basile, L. J., 10.1016/C2009-0-22072-1, Academic Press, New York (1978). (1978) DOI10.1016/C2009-0-22072-1
  10. Folland, G. B., Real Analysis: Modern Techniques and Their Applications, Pure and Applied Mathematics. John Wiley & Sons, New York (1984). (1984) Zbl0549.28001MR0767633
  11. Folland, G. B., Fourier Analysis and Its Applications, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove (1992). (1992) Zbl0786.42001MR1145236
  12. Gordon, R. A., 10.1090/gsm/004, Graduate Studies in Mathematics 4. AMS, Providence (1994). (1994) Zbl0807.26004MR1288751DOI10.1090/gsm/004
  13. Gray, R. M., Goodman, J. W., 10.1007/978-1-4615-2359-8, The Kluwer International Series in Engineering and Computer Science 322. Kluwer Academic, Dordrecht (1995). (1995) Zbl0997.42500DOI10.1007/978-1-4615-2359-8
  14. Lee, P.-Y., 10.1142/0845, Series in Real Analysis 2. World Scientific, London (1989). (1989) Zbl0699.26004MR1050957DOI10.1142/0845
  15. Liflyand, E., 10.1134/S0001434616070087, Math. Notes 100 (2016), 93-99. (2016) Zbl1362.42013MR3588831DOI10.1134/S0001434616070087
  16. Liflyand, E., 10.1016/j.jmaa.2015.12.042, J. Math. Anal. Appl. 436 (2016), 1082-1101. (2016) Zbl1341.42009MR3446998DOI10.1016/j.jmaa.2015.12.042
  17. Liflyand, E., 10.1007/s00041-017-9530-1, J. Fourier Anal. Appl. 24 (2018), 525-544. (2018) Zbl1440.42019MR3776333DOI10.1007/s00041-017-9530-1
  18. Liflyand, E., 10.1007/978-3-030-04429-9, Applied and Numerical Harmonic Analysis. Birkhäuser, Cham (2019). (2019) Zbl1418.42001MR3929690DOI10.1007/978-3-030-04429-9
  19. McLeod, R. M., 10.5948/UPO9781614440208, The Carus Mathematical Monographs 20. Mathematical Association of America, Washington (1980). (1980) Zbl0486.26005MR0588510DOI10.5948/UPO9781614440208
  20. McShane, E. J., 10.1515/9781400877812, Princeton Mathematical Series 7. Princeton University Press, Princeton (1947). (1947) Zbl0033.05302MR0010606DOI10.1515/9781400877812
  21. Torres, F. J. Mendoza, Marcías, M. G. Morales, Reyna, J. A. Escamilla, Ruiz, J. H. Arredondo, 10.5373/jarpm.1458.052712, J. Adv. Res. Pure Math. 5 (2013), 33-46. (2013) MR3041342DOI10.5373/jarpm.1458.052712
  22. Monteiro, G. A., Slavík, A., Tvrdý, M., 10.1142/9432, Series in Real Analysis 15. World Scientific, Hackensack (2019). (2019) Zbl1437.28001MR3839599DOI10.1142/9432
  23. Morales, M. G., Arredondo, J. H., Mendoza, F. J., An extension of some properties for the Fourier transform operator on L p ( ) spaces, Rev. Unión Mat. Argent. 57 (2016), 85-94. (2016) Zbl1357.43001MR3583297
  24. Peters, T. M., (eds.), J. Williams, 10.1007/978-1-4612-0637-8, Applied and Numerical Harmonic Analysis. Birkhäuser, Basel (1998). (1998) Zbl0910.92022MR1634301DOI10.1007/978-1-4612-0637-8
  25. Pinsky, M. A., 10.1090/gsm/102, Brooks/Cole Series in Advanced Mathematics. Brooks/Cole, Pacific Grove (2002). (2002) Zbl1065.42001MR2100936DOI10.1090/gsm/102
  26. Rudin, W., Real and Complex Analysis, McGraw-Hill, New York (1987). (1987) Zbl0925.00005MR0924157
  27. Ruzhansky, M., Tikhonov, S., 10.1007/978-3-319-27466-9_1, Methods of Fourier Analysis and Approximation Theory Applied and Numerical Harmonic Analysis. Birkhäuser, Basel 2016 1-19. Zbl1343.42001MR3497695DOI10.1007/978-3-319-27466-9_1
  28. Sánchez-Perales, S., Torres, F. J. Mendoza, Reyna, J. A. Escamilla, 10.1155/2012/209462, Int. J. Math. Math. Sci. 2012 (2012), Article ID 209462, 11 pages. (2012) Zbl1253.44006MR2983789DOI10.1155/2012/209462
  29. Titchmarsh, E. C., Introduction to the Theory of Fourier Integrals, Clarendon Press, Oxford (1937). (1937) Zbl0017.40404MR0942661

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.