On multipoint constraints in FETI methods
Pavla Hrušková; Zdeněk Dostál; Oldřich Vlach; Petr Vodstrčil
Applications of Mathematics (2025)
- Issue: 1, page 47-64
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHrušková, Pavla, et al. "On multipoint constraints in FETI methods." Applications of Mathematics (2025): 47-64. <http://eudml.org/doc/299926>.
@article{Hrušková2025,
abstract = {FETI (finite element tearing and interconnecting) based domain decomposition methods are well-established massively parallel methods for solving huge linear systems arising from discretizing partial differential equations. The first steps of FETI decompose the domain into nonoverlapping subdomains, discretize the subdomains using matching grids, and interconnect the adjacent variables by multipoint constraints. However, the multipoint constraints enforcing identification of the corners' variables do not have a unique representation and their proper choice and modification can improve the performance of FETI. Here, we briefly review the main options, including orthogonal, fully redundant, or localized constraints, and use the basic linear algebra and spectral graph theory to examine the quantitative effect of their choice on the effective control of the feasibility error and rate of convergence of FETI.},
author = {Hrušková, Pavla, Dostál, Zdeněk, Vlach, Oldřich, Vodstrčil, Petr},
journal = {Applications of Mathematics},
keywords = {domain decomposition; multipoint constraint; redundant multiplier},
language = {eng},
number = {1},
pages = {47-64},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On multipoint constraints in FETI methods},
url = {http://eudml.org/doc/299926},
year = {2025},
}
TY - JOUR
AU - Hrušková, Pavla
AU - Dostál, Zdeněk
AU - Vlach, Oldřich
AU - Vodstrčil, Petr
TI - On multipoint constraints in FETI methods
JO - Applications of Mathematics
PY - 2025
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 47
EP - 64
AB - FETI (finite element tearing and interconnecting) based domain decomposition methods are well-established massively parallel methods for solving huge linear systems arising from discretizing partial differential equations. The first steps of FETI decompose the domain into nonoverlapping subdomains, discretize the subdomains using matching grids, and interconnect the adjacent variables by multipoint constraints. However, the multipoint constraints enforcing identification of the corners' variables do not have a unique representation and their proper choice and modification can improve the performance of FETI. Here, we briefly review the main options, including orthogonal, fully redundant, or localized constraints, and use the basic linear algebra and spectral graph theory to examine the quantitative effect of their choice on the effective control of the feasibility error and rate of convergence of FETI.
LA - eng
KW - domain decomposition; multipoint constraint; redundant multiplier
UR - http://eudml.org/doc/299926
ER -
References
top- Bavestrello, H., Avery, P., Farhat, C., 10.1016/j.cma.2006.03.024, Comput. Methods Appl. Mech. Eng. 196 (2007), 1347-1368. (2007) Zbl1173.74399MR2277021DOI10.1016/j.cma.2006.03.024
- Cvetković, D. M., Doob, M., Sachs, H., Spectra of Graphs: Theory and Application, Pure and Applied Mathematics (Academic Press) 87. Academic Press, New York (1980). (1980) Zbl1540.05001MR0572262
- Dostál, Z., Brzobohatý, T., Horák, D., Kružík, J., Vlach, O., 10.1007/978-3-030-95025-5_3, Domain Decomposition Methods in Science and Engineering XXVI Lecture Notes in Computational Science and Engineering 145. Springer, Cham (2022), 29-40. (2022) Zbl07936273MR4703833DOI10.1007/978-3-030-95025-5_3
- Dostál, Z., Brzobohatý, T., Vlach, O., Meca, O., Sadowská, M., 10.1007/s00466-022-02242-2, Comput. Mech. 71 (2023), 333-347. (2023) Zbl1514.74084MR4539373DOI10.1007/s00466-022-02242-2
- Dostál, Z., Brzobohatý, T., Vlach, O., Říha, L., 10.1007/s00211-022-01307-x, Numer. Math. 152 (2022), 41-66. (2022) Zbl1496.65231MR4474055DOI10.1007/s00211-022-01307-x
- Dostál, Z., Horák, D., Kučera, R., 10.1002/cnm.881, Commun. Numer. Methods Eng. 22 (2006), 1155-1162. (2006) Zbl1107.65104MR2282408DOI10.1002/cnm.881
- Dostál, Z., Kozubek, T., Sadowská, M., Vondrák, V., 10.1007/978-3-031-33580-8, Advances in Mechanics and Mathematics 36. Birkhäuser, Cham (2023). (2023) Zbl07746982MR4807229DOI10.1007/978-3-031-33580-8
- Farhat, C., Lacour, C., Rixen, D., 10.1002/(SICI)1097-0207(19981130)43:6<997::AID-NME455>3.0.CO;2-B, Int. J. Numer. Methods Eng. 43 (1998), 997-1016. (1998) Zbl0944.74071MR1654667DOI10.1002/(SICI)1097-0207(19981130)43:6<997::AID-NME455>3.0.CO;2-B
- Farhat, C., Mandel, J., Roux, F.-X., 10.1016/0045-7825(94)90068-X, Comput. Methods Appl. Mech. Eng. 115 (1994), 365-385. (1994) MR1285024DOI10.1016/0045-7825(94)90068-X
- Farhat, C., Roux, F.-X., 10.1002/nme.1620320604, Int. J. Numer. Methods Eng. 32 (1991), 1205-1227. (1991) Zbl0758.65075MR3618550DOI10.1002/nme.1620320604
- Farhat, C., Roux, F.-X., 10.1137/0913020, SIAM J. Sci. Stat. Comput. 13 (1992), 379-396. (1992) Zbl0746.65086MR1145192DOI10.1137/0913020
- Felippa, C. A., 10.1115/1.3173098, J. Appl. Mech. 54 (1987), 726-728. (1987) Zbl0619.73090DOI10.1115/1.3173098
- Felippa, C. A., Park, K. C., 10.1016/0045-7825(80)90040-7, Comput. Methods Appl. Mech. Eng. 24 (1980), 61-111. (1980) Zbl0453.73091DOI10.1016/0045-7825(80)90040-7
- Felippa, C. A., Park, K. C., 10.1016/S0045-7825(97)00048-0, Comput. Methods Appl. Mech. Eng. 149 (1997), 319-337. (1997) Zbl0918.73129MR1486246DOI10.1016/S0045-7825(97)00048-0
- Fragakis, Y., Papadrakakis, M., 10.1016/S0045-7825(03)00374-8, Comput. Methods Appl. Mech. Eng. 192 (2003), 3799-3830. (2003) Zbl1054.74069DOI10.1016/S0045-7825(03)00374-8
- Golub, G. H., Loan, C. F. Van, Matrix Computations, Johns Hopkins Studies in the Mathematical Sciences. The Johns Hopkins University Press, Baltimore (2013). (2013) Zbl1268.65037MR3024913
- Kaneko, I., Lawo, M., Thierauf, G., 10.1002/nme.1620181004, Int. J. Numer. Methods Eng. 18 (1982), 1469-1495. (1982) Zbl0542.73107MR0679230DOI10.1002/nme.1620181004
- Klawonn, A., Widlund, O. B., 10.1002/1097-0312(200101)54:1<57::AID-CPA3>3.0.CO;2-D, Commun. Pure Appl. Math. 54 (2001), 57-90. (2001) Zbl1023.65120MR1787107DOI10.1002/1097-0312(200101)54:1<57::AID-CPA3>3.0.CO;2-D
- Miyamura, T., Yoshimura, S., 10.1016/j.cma.2022.115846, Comput. Methods Appl. Mech. Eng. 405 (2023), Article ID 115846, 29 pages. (2023) Zbl1539.74461MR4530714DOI10.1016/j.cma.2022.115846
- Mohar, B., The Laplacian spectrum of graphs, Graph Theory, Combinatorics, and Applications. Vol. 2 John Wiley & Sons, New York (1991), 871-898. (1991) Zbl0840.05059MR1170831
- Park, K. C., Felippa, C. A., 10.1002/(SICI)1097-0207(20000110/30)47:1/3<395::AID-NME777>3.0.CO;2-9, Int. J. Numer. Methods Eng. 47 (2000), 395-418. (2000) Zbl0988.74032MR1744295DOI10.1002/(SICI)1097-0207(20000110/30)47:1/3<395::AID-NME777>3.0.CO;2-9
- Park, K. C., Felippa, C. A., Gumaste, U. A., 10.1007/s004660050007, Comput. Mech. 24 (2000), 476-490. (2000) Zbl0961.74077DOI10.1007/s004660050007
- Pechstein, C., 10.1007/978-3-642-23588-7, Lecture Notes in Computational Science and Engineering 90. Springer, Berlin (2013). (2013) Zbl1272.65100MR3013465DOI10.1007/978-3-642-23588-7
- Rixen, D. J., Farhat, C., 10.1002/(SICI)1097-0207(19990210)44:4<489::AID-NME514>3.0.CO;2-Z, Int. J. Numer. Methods Eng. 44 (1999), 489-516. (1999) Zbl0940.74067MR1670647DOI10.1002/(SICI)1097-0207(19990210)44:4<489::AID-NME514>3.0.CO;2-Z
- Toselli, A., Widlund, O., 10.1007/b137868, Springer Series in Computational Mathematics 34. Springer, Berlin (2005). (2005) Zbl1069.65138MR2104179DOI10.1007/b137868
- Trefethen, L. N., III, D. Bau, 10.1137/1.9780898719574, SIAM, Philadelphia (1997). (1997) Zbl0874.65013MR1444820DOI10.1137/1.9780898719574
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.