On multipoint constraints in FETI methods

Pavla Hrušková; Zdeněk Dostál; Oldřich Vlach; Petr Vodstrčil

Applications of Mathematics (2025)

  • Issue: 1, page 47-64
  • ISSN: 0862-7940

Abstract

top
FETI (finite element tearing and interconnecting) based domain decomposition methods are well-established massively parallel methods for solving huge linear systems arising from discretizing partial differential equations. The first steps of FETI decompose the domain into nonoverlapping subdomains, discretize the subdomains using matching grids, and interconnect the adjacent variables by multipoint constraints. However, the multipoint constraints enforcing identification of the corners' variables do not have a unique representation and their proper choice and modification can improve the performance of FETI. Here, we briefly review the main options, including orthogonal, fully redundant, or localized constraints, and use the basic linear algebra and spectral graph theory to examine the quantitative effect of their choice on the effective control of the feasibility error and rate of convergence of FETI.

How to cite

top

Hrušková, Pavla, et al. "On multipoint constraints in FETI methods." Applications of Mathematics (2025): 47-64. <http://eudml.org/doc/299926>.

@article{Hrušková2025,
abstract = {FETI (finite element tearing and interconnecting) based domain decomposition methods are well-established massively parallel methods for solving huge linear systems arising from discretizing partial differential equations. The first steps of FETI decompose the domain into nonoverlapping subdomains, discretize the subdomains using matching grids, and interconnect the adjacent variables by multipoint constraints. However, the multipoint constraints enforcing identification of the corners' variables do not have a unique representation and their proper choice and modification can improve the performance of FETI. Here, we briefly review the main options, including orthogonal, fully redundant, or localized constraints, and use the basic linear algebra and spectral graph theory to examine the quantitative effect of their choice on the effective control of the feasibility error and rate of convergence of FETI.},
author = {Hrušková, Pavla, Dostál, Zdeněk, Vlach, Oldřich, Vodstrčil, Petr},
journal = {Applications of Mathematics},
keywords = {domain decomposition; multipoint constraint; redundant multiplier},
language = {eng},
number = {1},
pages = {47-64},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On multipoint constraints in FETI methods},
url = {http://eudml.org/doc/299926},
year = {2025},
}

TY - JOUR
AU - Hrušková, Pavla
AU - Dostál, Zdeněk
AU - Vlach, Oldřich
AU - Vodstrčil, Petr
TI - On multipoint constraints in FETI methods
JO - Applications of Mathematics
PY - 2025
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 47
EP - 64
AB - FETI (finite element tearing and interconnecting) based domain decomposition methods are well-established massively parallel methods for solving huge linear systems arising from discretizing partial differential equations. The first steps of FETI decompose the domain into nonoverlapping subdomains, discretize the subdomains using matching grids, and interconnect the adjacent variables by multipoint constraints. However, the multipoint constraints enforcing identification of the corners' variables do not have a unique representation and their proper choice and modification can improve the performance of FETI. Here, we briefly review the main options, including orthogonal, fully redundant, or localized constraints, and use the basic linear algebra and spectral graph theory to examine the quantitative effect of their choice on the effective control of the feasibility error and rate of convergence of FETI.
LA - eng
KW - domain decomposition; multipoint constraint; redundant multiplier
UR - http://eudml.org/doc/299926
ER -

References

top
  1. Bavestrello, H., Avery, P., Farhat, C., 10.1016/j.cma.2006.03.024, Comput. Methods Appl. Mech. Eng. 196 (2007), 1347-1368. (2007) Zbl1173.74399MR2277021DOI10.1016/j.cma.2006.03.024
  2. Cvetković, D. M., Doob, M., Sachs, H., Spectra of Graphs: Theory and Application, Pure and Applied Mathematics (Academic Press) 87. Academic Press, New York (1980). (1980) Zbl1540.05001MR0572262
  3. Dostál, Z., Brzobohatý, T., Horák, D., Kružík, J., Vlach, O., 10.1007/978-3-030-95025-5_3, Domain Decomposition Methods in Science and Engineering XXVI Lecture Notes in Computational Science and Engineering 145. Springer, Cham (2022), 29-40. (2022) Zbl07936273MR4703833DOI10.1007/978-3-030-95025-5_3
  4. Dostál, Z., Brzobohatý, T., Vlach, O., Meca, O., Sadowská, M., 10.1007/s00466-022-02242-2, Comput. Mech. 71 (2023), 333-347. (2023) Zbl1514.74084MR4539373DOI10.1007/s00466-022-02242-2
  5. Dostál, Z., Brzobohatý, T., Vlach, O., Říha, L., 10.1007/s00211-022-01307-x, Numer. Math. 152 (2022), 41-66. (2022) Zbl1496.65231MR4474055DOI10.1007/s00211-022-01307-x
  6. Dostál, Z., Horák, D., Kučera, R., 10.1002/cnm.881, Commun. Numer. Methods Eng. 22 (2006), 1155-1162. (2006) Zbl1107.65104MR2282408DOI10.1002/cnm.881
  7. Dostál, Z., Kozubek, T., Sadowská, M., Vondrák, V., 10.1007/978-3-031-33580-8, Advances in Mechanics and Mathematics 36. Birkhäuser, Cham (2023). (2023) Zbl07746982MR4807229DOI10.1007/978-3-031-33580-8
  8. Farhat, C., Lacour, C., Rixen, D., 10.1002/(SICI)1097-0207(19981130)43:6<997::AID-NME455>3.0.CO;2-B, Int. J. Numer. Methods Eng. 43 (1998), 997-1016. (1998) Zbl0944.74071MR1654667DOI10.1002/(SICI)1097-0207(19981130)43:6<997::AID-NME455>3.0.CO;2-B
  9. Farhat, C., Mandel, J., Roux, F.-X., 10.1016/0045-7825(94)90068-X, Comput. Methods Appl. Mech. Eng. 115 (1994), 365-385. (1994) MR1285024DOI10.1016/0045-7825(94)90068-X
  10. Farhat, C., Roux, F.-X., 10.1002/nme.1620320604, Int. J. Numer. Methods Eng. 32 (1991), 1205-1227. (1991) Zbl0758.65075MR3618550DOI10.1002/nme.1620320604
  11. Farhat, C., Roux, F.-X., 10.1137/0913020, SIAM J. Sci. Stat. Comput. 13 (1992), 379-396. (1992) Zbl0746.65086MR1145192DOI10.1137/0913020
  12. Felippa, C. A., 10.1115/1.3173098, J. Appl. Mech. 54 (1987), 726-728. (1987) Zbl0619.73090DOI10.1115/1.3173098
  13. Felippa, C. A., Park, K. C., 10.1016/0045-7825(80)90040-7, Comput. Methods Appl. Mech. Eng. 24 (1980), 61-111. (1980) Zbl0453.73091DOI10.1016/0045-7825(80)90040-7
  14. Felippa, C. A., Park, K. C., 10.1016/S0045-7825(97)00048-0, Comput. Methods Appl. Mech. Eng. 149 (1997), 319-337. (1997) Zbl0918.73129MR1486246DOI10.1016/S0045-7825(97)00048-0
  15. Fragakis, Y., Papadrakakis, M., 10.1016/S0045-7825(03)00374-8, Comput. Methods Appl. Mech. Eng. 192 (2003), 3799-3830. (2003) Zbl1054.74069DOI10.1016/S0045-7825(03)00374-8
  16. Golub, G. H., Loan, C. F. Van, Matrix Computations, Johns Hopkins Studies in the Mathematical Sciences. The Johns Hopkins University Press, Baltimore (2013). (2013) Zbl1268.65037MR3024913
  17. Kaneko, I., Lawo, M., Thierauf, G., 10.1002/nme.1620181004, Int. J. Numer. Methods Eng. 18 (1982), 1469-1495. (1982) Zbl0542.73107MR0679230DOI10.1002/nme.1620181004
  18. Klawonn, A., Widlund, O. B., 10.1002/1097-0312(200101)54:1<57::AID-CPA3>3.0.CO;2-D, Commun. Pure Appl. Math. 54 (2001), 57-90. (2001) Zbl1023.65120MR1787107DOI10.1002/1097-0312(200101)54:1<57::AID-CPA3>3.0.CO;2-D
  19. Miyamura, T., Yoshimura, S., 10.1016/j.cma.2022.115846, Comput. Methods Appl. Mech. Eng. 405 (2023), Article ID 115846, 29 pages. (2023) Zbl1539.74461MR4530714DOI10.1016/j.cma.2022.115846
  20. Mohar, B., The Laplacian spectrum of graphs, Graph Theory, Combinatorics, and Applications. Vol. 2 John Wiley & Sons, New York (1991), 871-898. (1991) Zbl0840.05059MR1170831
  21. Park, K. C., Felippa, C. A., 10.1002/(SICI)1097-0207(20000110/30)47:1/3<395::AID-NME777>3.0.CO;2-9, Int. J. Numer. Methods Eng. 47 (2000), 395-418. (2000) Zbl0988.74032MR1744295DOI10.1002/(SICI)1097-0207(20000110/30)47:1/3<395::AID-NME777>3.0.CO;2-9
  22. Park, K. C., Felippa, C. A., Gumaste, U. A., 10.1007/s004660050007, Comput. Mech. 24 (2000), 476-490. (2000) Zbl0961.74077DOI10.1007/s004660050007
  23. Pechstein, C., 10.1007/978-3-642-23588-7, Lecture Notes in Computational Science and Engineering 90. Springer, Berlin (2013). (2013) Zbl1272.65100MR3013465DOI10.1007/978-3-642-23588-7
  24. Rixen, D. J., Farhat, C., 10.1002/(SICI)1097-0207(19990210)44:4<489::AID-NME514>3.0.CO;2-Z, Int. J. Numer. Methods Eng. 44 (1999), 489-516. (1999) Zbl0940.74067MR1670647DOI10.1002/(SICI)1097-0207(19990210)44:4<489::AID-NME514>3.0.CO;2-Z
  25. Toselli, A., Widlund, O., 10.1007/b137868, Springer Series in Computational Mathematics 34. Springer, Berlin (2005). (2005) Zbl1069.65138MR2104179DOI10.1007/b137868
  26. Trefethen, L. N., III, D. Bau, 10.1137/1.9780898719574, SIAM, Philadelphia (1997). (1997) Zbl0874.65013MR1444820DOI10.1137/1.9780898719574

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.