Ergodicity of increments of the Rosenblatt process and some consequences
Petr Čoupek; Pavel Křížek; Bohdan Maslowski
Czechoslovak Mathematical Journal (2025)
- Issue: 1, page 327-343
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topČoupek, Petr, Křížek, Pavel, and Maslowski, Bohdan. "Ergodicity of increments of the Rosenblatt process and some consequences." Czechoslovak Mathematical Journal (2025): 327-343. <http://eudml.org/doc/299927>.
@article{Čoupek2025,
abstract = {A new proof of the mixing property of the increments of Rosenblatt processes is given. The proof relies on infinite divisibility of the Rosenblatt law that allows to prove only the pointwise convergence of characteristic functions. Subsequently, the result is used to prove weak consistency of an estimator for the self-similarity parameter of a Rosenblatt process, and to prove the existence of a random attractor for a random dynamical system induced by a stochastic reaction-diffusion equation driven by additive Rosenblatt noise.},
author = {Čoupek, Petr, Křížek, Pavel, Maslowski, Bohdan},
journal = {Czechoslovak Mathematical Journal},
keywords = {Rosenblatt process; mixing; variation; consistent estimator; random attractor},
language = {eng},
number = {1},
pages = {327-343},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Ergodicity of increments of the Rosenblatt process and some consequences},
url = {http://eudml.org/doc/299927},
year = {2025},
}
TY - JOUR
AU - Čoupek, Petr
AU - Křížek, Pavel
AU - Maslowski, Bohdan
TI - Ergodicity of increments of the Rosenblatt process and some consequences
JO - Czechoslovak Mathematical Journal
PY - 2025
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 327
EP - 343
AB - A new proof of the mixing property of the increments of Rosenblatt processes is given. The proof relies on infinite divisibility of the Rosenblatt law that allows to prove only the pointwise convergence of characteristic functions. Subsequently, the result is used to prove weak consistency of an estimator for the self-similarity parameter of a Rosenblatt process, and to prove the existence of a random attractor for a random dynamical system induced by a stochastic reaction-diffusion equation driven by additive Rosenblatt noise.
LA - eng
KW - Rosenblatt process; mixing; variation; consistent estimator; random attractor
UR - http://eudml.org/doc/299927
ER -
References
top- Abry, P., Pipiras, V., 10.1016/j.sigpro.2005.10.021, Signal Process. 86 (2006), 2326-2339. (2006) Zbl1172.94348DOI10.1016/j.sigpro.2005.10.021
- Albin, J. M. P., 10.1016/S0167-7152(98)00109-6, Stat. Probab. Lett. 40 (1998), 83-91. (1998) Zbl0951.60019MR1650532DOI10.1016/S0167-7152(98)00109-6
- Arnold, L., 10.1007/978-3-662-12878-7, Springer Monographs in Mathematics. Springer, Berlin (1998). (1998) Zbl0906.34001MR1723992DOI10.1007/978-3-662-12878-7
- Assaad, O., Tudor, C. A., 10.1007/s11203-020-09219-z, Stat. Inference Stoch. Process. 23 (2020), 251-270. (2020) Zbl1448.60118MR4123924DOI10.1007/s11203-020-09219-z
- Bardet, J.-M., Tudor, C. A., 10.1016/j.spa.2010.08.003, Stochastic Processes Appl. 120 (2010), 2331-2362. (2010) Zbl1203.60043MR2728168DOI10.1016/j.spa.2010.08.003
- Billingsley, P., Probability and Measure, Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, New York (1995). (1995) Zbl0822.60002MR1324786
- Bonaccorsi, S., Tudor, C. A., 10.1007/s10884-011-9217-2, J. Dyn. Differ. Equations 23 (2011), 791-816. (2011) Zbl1239.60052MR2859941DOI10.1007/s10884-011-9217-2
- Chronopoulou, A., Tudor, C. A., Viens, F. G., 10.31390/cosa.5.1.10, Commun. Stoch. Anal. 5 (2011), 161-185. (2011) Zbl1331.62098MR2808541DOI10.31390/cosa.5.1.10
- Chronopoulou, A., Viens, F. G., Tudor, C. A., 10.1214/09-EJS423, Electron. J. Stat. 3 (2009), 1393-1435. (2009) Zbl1326.60046MR2578831DOI10.1214/09-EJS423
- Čoupek, P., 10.1080/07362994.2017.1409124, Stochastic Anal. Appl. 36 (2018), 393-412. (2018) Zbl1390.60227MR3784139DOI10.1080/07362994.2017.1409124
- Čoupek, P., Duncan, T. E., Pasik-Duncan, B., 10.1016/j.spa.2020.01.004, Stochastic Processes Appl. 150 (2022), 853-885. (2022) Zbl1494.60058MR4440168DOI10.1016/j.spa.2020.01.004
- Čoupek, P., Maslowski, B., Ondreját, M., 10.1142/S021949371850048X, Stoch. Dyn. 18 (2018), Article ID 1850048, 22 pages. (2018) Zbl1417.60044MR3869886DOI10.1142/S021949371850048X
- Čoupek, P., Maslowski, B., Ondreját, M., 10.1016/j.jfa.2022.109393, J. Funct. Anal. 282 (2022), Article ID 109393, 62 pages. (2022) Zbl1497.60052MR4375656DOI10.1016/j.jfa.2022.109393
- Čoupek, P., Ondreját, M., 10.1007/s11118-022-10051-8, Potential Anal 60 (2024), 307-339. (2024) Zbl07798453MR4696040DOI10.1007/s11118-022-10051-8
- Crauel, H., Debussche, A., Flandoli, F., 10.1007/BF02219225, J. Dyn. Differ. Equations 9 (1997), 307-341. (1997) Zbl0884.58064MR1451294DOI10.1007/BF02219225
- Crauel, H., Flandoli, F., 10.1007/BF01193705, Probab. Theory Relat. Fields 100 (1994), 365-393. (1994) Zbl0819.58023MR1305587DOI10.1007/BF01193705
- Davydov, Y. A., 10.1137/1115050, Theor. Probab. Appl. 15 (1970), 487-498. (1970) Zbl0219.60030MR0283872DOI10.1137/1115050
- Daw, L., Kerchev, G., 10.1016/j.spa.2023.04.001, Stochastic Processes Appl. 161 (2023), 544-571. (2023) Zbl07697552MR4583768DOI10.1016/j.spa.2023.04.001
- Dobrushin, R. L., Major, P., 10.1007/BF00535673, Z. Wahrscheinlichkeitstheor. Verw. Geb. 50 (1979), 27-52. (1979) Zbl0397.60034MR0550122DOI10.1007/BF00535673
- Garrido-Atienza, M. J., Lu, K., Schmalfuss, B., 10.3934/dcdsb.2010.14.473, Discrete Contin. Dyn. Syst., Ser. B 14 (2010), 473-493. (2010) Zbl1200.37075MR2660869DOI10.3934/dcdsb.2010.14.473
- Garrido-Atienza, M. J., Schmalfuss, B., 10.1007/BF03322556, Bol. Soc. Esp. Mat. Apl., SeMA 51 (2010), 71-78. (2010) Zbl1242.60037MR2675964DOI10.1007/BF03322556
- Gross, A., 10.1016/0304-4149(94)90046-9, Stochastic Processes Appl. 51 (1994), 277-295. (1994) Zbl0813.60039MR1288293DOI10.1016/0304-4149(94)90046-9
- Kerchev, G., Nourdin, I., Saksman, E., Viitasaari, L., 10.1016/j.spa.2020.09.018, Stochastic Processes Appl. 131 (2021), 498-522. (2021) MR4165649DOI10.1016/j.spa.2020.09.018
- Kiška, B., Variation of Rosenblatt Process: Master's Thesis, Charles University, Faculty of Mathematics and Physics, Prague (2022). (2022)
- Kuehn, C., Lux, K., Neamţu, A., 10.1098/rspa.2021.0740, Proc. R. Soc. A 478 (2022), Article ID 20210740, 12 pages. (2022) MR4409442DOI10.1098/rspa.2021.0740
- Maejima, M., Tudor, C. A., 10.1016/j.spl.2013.02.019, Stat. Probab. Lett. 83 (2013), 1490-1495. (2013) Zbl1287.60024MR3048314DOI10.1016/j.spl.2013.02.019
- Maruyama, G., Infinitely divisible processes, Teor. Veroyatn. Primen. 15 (1970), 3-23. (1970) Zbl0268.60036MR0285046
- Maslowski, B., Schmalfuss, B., 10.1081/SAP-200029498, Stochastic Anal. Appl. 22 (2004), 1577-1607. (2004) Zbl1062.60060MR2095071DOI10.1081/SAP-200029498
- Mori, T., Oodaira, H., 10.1007/BF01000212, Probab. Theory Relat. Fields 71 (1986), 367-391. (1986) Zbl0562.60033MR0824710DOI10.1007/BF01000212
- Nourdin, I., Peccati, G., 10.1017/CBO9781139084659, Cambridge Tracts in Mathematics 129. Cambridge University Press, Cambridge (2012). (2012) Zbl1266.60001MR2962301DOI10.1017/CBO9781139084659
- Nualart, D., 10.1007/3-540-28329-3, Probability and Its Applications. Springer, Berlin (2006). (2006) Zbl1099.60003MR2200233DOI10.1007/3-540-28329-3
- Pipiras, V., 10.1007/s00041-004-3004-y, J. Fourier Anal. Appl. 10 (2004), 599-634. (2004) Zbl1075.60032MR2105535DOI10.1007/s00041-004-3004-y
- Rosenblatt, M., Independence and dependence, Proceedings of the 4th Berkeley Symposium Mathemacal Statistics and Probability University of California Press, Berkeley (1961), 431-443. (1961) Zbl0105.11802MR0133863
- Rosiński, J., 10.1016/0304-4149(95)00083-6, Stochastic Processes Appl. 61 (1996), 277-288. (1996) Zbl0849.60031MR1386177DOI10.1016/0304-4149(95)00083-6
- Samorodnitsky, G., 10.1007/978-3-319-45575-4, Springer Series in Operations Research and Financial Engineering. Springer, Cham (2016). (2016) Zbl1376.60007MR3561100DOI10.1007/978-3-319-45575-4
- Slaoui, M., Tudor, C. A., 10.1016/j.jmaa.2019.06.031, J. Math. Anal. Appl. 479 (2019), 350-383. (2019) Zbl1479.60105MR3987039DOI10.1016/j.jmaa.2019.06.031
- Slaoui, M., Tudor, C. A., 10.1090/tpms/1070, Theory Probab. Math. Stat. 98 (2019), 183-198. (2019) Zbl1488.60136MR3824686DOI10.1090/tpms/1070
- Slaoui, M., Tudor, C. A., 10.1142/S021902571950022X, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 22 (2019), Articles ID 1950022, 23 pages. (2019) Zbl1436.60054MR4064931DOI10.1142/S021902571950022X
- Taqqu, M. S., 10.1007/BF00532868, Z. Wahrscheinlichkeitstheor. Verw. Geb. 31 (1975), 287-302. (1975) Zbl0303.60033MR0400329DOI10.1007/BF00532868
- Taqqu, M. S., 10.1007/BF00535674, Z. Wahrscheinlichkeitstheor. Verw. Geb. 50 (1979), 53-83. (1979) Zbl0397.60028MR0550123DOI10.1007/BF00535674
- Taqqu, M. S., 10.1007/978-1-4419-8339-8_6, Selected Works of Murray Rosenblatt Springer, New York (2011), 29-45. (2011) MR1455144DOI10.1007/978-1-4419-8339-8_6
- Temam, R., 10.1007/978-1-4612-0645-3, Applied Mathematical Sciences 68. Springer, New York (1997). (1997) Zbl0871.35001MR1441312DOI10.1007/978-1-4612-0645-3
- Tudor, C. A., 10.1051/ps:2007037, ESAIM, Probab. Stat. 12 (2008), 230-257. (2008) Zbl1187.60028MR2374640DOI10.1051/ps:2007037
- Tudor, C. A., Viens, F. G., 10.1214/09-AOP459, Ann. Probab. 37 (2009), 2093-2134. (2009) Zbl1196.60036MR2573552DOI10.1214/09-AOP459
- Veillette, M. S., Taqqu, M. S., 10.3150/12-BEJ421, Bernoulli 19 (2013), 982-1005 9999DOI99999 10.3150/12-BEJ421 . (2013) Zbl1273.60020MR3079303DOI10.3150/12-BEJ421
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.