Ergodicity of increments of the Rosenblatt process and some consequences

Petr Čoupek; Pavel Křížek; Bohdan Maslowski

Czechoslovak Mathematical Journal (2025)

  • Issue: 1, page 327-343
  • ISSN: 0011-4642

Abstract

top
A new proof of the mixing property of the increments of Rosenblatt processes is given. The proof relies on infinite divisibility of the Rosenblatt law that allows to prove only the pointwise convergence of characteristic functions. Subsequently, the result is used to prove weak consistency of an estimator for the self-similarity parameter of a Rosenblatt process, and to prove the existence of a random attractor for a random dynamical system induced by a stochastic reaction-diffusion equation driven by additive Rosenblatt noise.

How to cite

top

Čoupek, Petr, Křížek, Pavel, and Maslowski, Bohdan. "Ergodicity of increments of the Rosenblatt process and some consequences." Czechoslovak Mathematical Journal (2025): 327-343. <http://eudml.org/doc/299927>.

@article{Čoupek2025,
abstract = {A new proof of the mixing property of the increments of Rosenblatt processes is given. The proof relies on infinite divisibility of the Rosenblatt law that allows to prove only the pointwise convergence of characteristic functions. Subsequently, the result is used to prove weak consistency of an estimator for the self-similarity parameter of a Rosenblatt process, and to prove the existence of a random attractor for a random dynamical system induced by a stochastic reaction-diffusion equation driven by additive Rosenblatt noise.},
author = {Čoupek, Petr, Křížek, Pavel, Maslowski, Bohdan},
journal = {Czechoslovak Mathematical Journal},
keywords = {Rosenblatt process; mixing; variation; consistent estimator; random attractor},
language = {eng},
number = {1},
pages = {327-343},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Ergodicity of increments of the Rosenblatt process and some consequences},
url = {http://eudml.org/doc/299927},
year = {2025},
}

TY - JOUR
AU - Čoupek, Petr
AU - Křížek, Pavel
AU - Maslowski, Bohdan
TI - Ergodicity of increments of the Rosenblatt process and some consequences
JO - Czechoslovak Mathematical Journal
PY - 2025
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 327
EP - 343
AB - A new proof of the mixing property of the increments of Rosenblatt processes is given. The proof relies on infinite divisibility of the Rosenblatt law that allows to prove only the pointwise convergence of characteristic functions. Subsequently, the result is used to prove weak consistency of an estimator for the self-similarity parameter of a Rosenblatt process, and to prove the existence of a random attractor for a random dynamical system induced by a stochastic reaction-diffusion equation driven by additive Rosenblatt noise.
LA - eng
KW - Rosenblatt process; mixing; variation; consistent estimator; random attractor
UR - http://eudml.org/doc/299927
ER -

References

top
  1. Abry, P., Pipiras, V., 10.1016/j.sigpro.2005.10.021, Signal Process. 86 (2006), 2326-2339. (2006) Zbl1172.94348DOI10.1016/j.sigpro.2005.10.021
  2. Albin, J. M. P., 10.1016/S0167-7152(98)00109-6, Stat. Probab. Lett. 40 (1998), 83-91. (1998) Zbl0951.60019MR1650532DOI10.1016/S0167-7152(98)00109-6
  3. Arnold, L., 10.1007/978-3-662-12878-7, Springer Monographs in Mathematics. Springer, Berlin (1998). (1998) Zbl0906.34001MR1723992DOI10.1007/978-3-662-12878-7
  4. Assaad, O., Tudor, C. A., 10.1007/s11203-020-09219-z, Stat. Inference Stoch. Process. 23 (2020), 251-270. (2020) Zbl1448.60118MR4123924DOI10.1007/s11203-020-09219-z
  5. Bardet, J.-M., Tudor, C. A., 10.1016/j.spa.2010.08.003, Stochastic Processes Appl. 120 (2010), 2331-2362. (2010) Zbl1203.60043MR2728168DOI10.1016/j.spa.2010.08.003
  6. Billingsley, P., Probability and Measure, Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, New York (1995). (1995) Zbl0822.60002MR1324786
  7. Bonaccorsi, S., Tudor, C. A., 10.1007/s10884-011-9217-2, J. Dyn. Differ. Equations 23 (2011), 791-816. (2011) Zbl1239.60052MR2859941DOI10.1007/s10884-011-9217-2
  8. Chronopoulou, A., Tudor, C. A., Viens, F. G., 10.31390/cosa.5.1.10, Commun. Stoch. Anal. 5 (2011), 161-185. (2011) Zbl1331.62098MR2808541DOI10.31390/cosa.5.1.10
  9. Chronopoulou, A., Viens, F. G., Tudor, C. A., 10.1214/09-EJS423, Electron. J. Stat. 3 (2009), 1393-1435. (2009) Zbl1326.60046MR2578831DOI10.1214/09-EJS423
  10. Čoupek, P., 10.1080/07362994.2017.1409124, Stochastic Anal. Appl. 36 (2018), 393-412. (2018) Zbl1390.60227MR3784139DOI10.1080/07362994.2017.1409124
  11. Čoupek, P., Duncan, T. E., Pasik-Duncan, B., 10.1016/j.spa.2020.01.004, Stochastic Processes Appl. 150 (2022), 853-885. (2022) Zbl1494.60058MR4440168DOI10.1016/j.spa.2020.01.004
  12. Čoupek, P., Maslowski, B., Ondreját, M., 10.1142/S021949371850048X, Stoch. Dyn. 18 (2018), Article ID 1850048, 22 pages. (2018) Zbl1417.60044MR3869886DOI10.1142/S021949371850048X
  13. Čoupek, P., Maslowski, B., Ondreját, M., 10.1016/j.jfa.2022.109393, J. Funct. Anal. 282 (2022), Article ID 109393, 62 pages. (2022) Zbl1497.60052MR4375656DOI10.1016/j.jfa.2022.109393
  14. Čoupek, P., Ondreját, M., 10.1007/s11118-022-10051-8, Potential Anal 60 (2024), 307-339. (2024) Zbl07798453MR4696040DOI10.1007/s11118-022-10051-8
  15. Crauel, H., Debussche, A., Flandoli, F., 10.1007/BF02219225, J. Dyn. Differ. Equations 9 (1997), 307-341. (1997) Zbl0884.58064MR1451294DOI10.1007/BF02219225
  16. Crauel, H., Flandoli, F., 10.1007/BF01193705, Probab. Theory Relat. Fields 100 (1994), 365-393. (1994) Zbl0819.58023MR1305587DOI10.1007/BF01193705
  17. Davydov, Y. A., 10.1137/1115050, Theor. Probab. Appl. 15 (1970), 487-498. (1970) Zbl0219.60030MR0283872DOI10.1137/1115050
  18. Daw, L., Kerchev, G., 10.1016/j.spa.2023.04.001, Stochastic Processes Appl. 161 (2023), 544-571. (2023) Zbl07697552MR4583768DOI10.1016/j.spa.2023.04.001
  19. Dobrushin, R. L., Major, P., 10.1007/BF00535673, Z. Wahrscheinlichkeitstheor. Verw. Geb. 50 (1979), 27-52. (1979) Zbl0397.60034MR0550122DOI10.1007/BF00535673
  20. Garrido-Atienza, M. J., Lu, K., Schmalfuss, B., 10.3934/dcdsb.2010.14.473, Discrete Contin. Dyn. Syst., Ser. B 14 (2010), 473-493. (2010) Zbl1200.37075MR2660869DOI10.3934/dcdsb.2010.14.473
  21. Garrido-Atienza, M. J., Schmalfuss, B., 10.1007/BF03322556, Bol. Soc. Esp. Mat. Apl., SeMA 51 (2010), 71-78. (2010) Zbl1242.60037MR2675964DOI10.1007/BF03322556
  22. Gross, A., 10.1016/0304-4149(94)90046-9, Stochastic Processes Appl. 51 (1994), 277-295. (1994) Zbl0813.60039MR1288293DOI10.1016/0304-4149(94)90046-9
  23. Kerchev, G., Nourdin, I., Saksman, E., Viitasaari, L., 10.1016/j.spa.2020.09.018, Stochastic Processes Appl. 131 (2021), 498-522. (2021) MR4165649DOI10.1016/j.spa.2020.09.018
  24. Kiška, B., Variation of Rosenblatt Process: Master's Thesis, Charles University, Faculty of Mathematics and Physics, Prague (2022). (2022) 
  25. Kuehn, C., Lux, K., Neamţu, A., 10.1098/rspa.2021.0740, Proc. R. Soc. A 478 (2022), Article ID 20210740, 12 pages. (2022) MR4409442DOI10.1098/rspa.2021.0740
  26. Maejima, M., Tudor, C. A., 10.1016/j.spl.2013.02.019, Stat. Probab. Lett. 83 (2013), 1490-1495. (2013) Zbl1287.60024MR3048314DOI10.1016/j.spl.2013.02.019
  27. Maruyama, G., Infinitely divisible processes, Teor. Veroyatn. Primen. 15 (1970), 3-23. (1970) Zbl0268.60036MR0285046
  28. Maslowski, B., Schmalfuss, B., 10.1081/SAP-200029498, Stochastic Anal. Appl. 22 (2004), 1577-1607. (2004) Zbl1062.60060MR2095071DOI10.1081/SAP-200029498
  29. Mori, T., Oodaira, H., 10.1007/BF01000212, Probab. Theory Relat. Fields 71 (1986), 367-391. (1986) Zbl0562.60033MR0824710DOI10.1007/BF01000212
  30. Nourdin, I., Peccati, G., 10.1017/CBO9781139084659, Cambridge Tracts in Mathematics 129. Cambridge University Press, Cambridge (2012). (2012) Zbl1266.60001MR2962301DOI10.1017/CBO9781139084659
  31. Nualart, D., 10.1007/3-540-28329-3, Probability and Its Applications. Springer, Berlin (2006). (2006) Zbl1099.60003MR2200233DOI10.1007/3-540-28329-3
  32. Pipiras, V., 10.1007/s00041-004-3004-y, J. Fourier Anal. Appl. 10 (2004), 599-634. (2004) Zbl1075.60032MR2105535DOI10.1007/s00041-004-3004-y
  33. Rosenblatt, M., Independence and dependence, Proceedings of the 4th Berkeley Symposium Mathemacal Statistics and Probability University of California Press, Berkeley (1961), 431-443. (1961) Zbl0105.11802MR0133863
  34. Rosiński, J., 10.1016/0304-4149(95)00083-6, Stochastic Processes Appl. 61 (1996), 277-288. (1996) Zbl0849.60031MR1386177DOI10.1016/0304-4149(95)00083-6
  35. Samorodnitsky, G., 10.1007/978-3-319-45575-4, Springer Series in Operations Research and Financial Engineering. Springer, Cham (2016). (2016) Zbl1376.60007MR3561100DOI10.1007/978-3-319-45575-4
  36. Slaoui, M., Tudor, C. A., 10.1016/j.jmaa.2019.06.031, J. Math. Anal. Appl. 479 (2019), 350-383. (2019) Zbl1479.60105MR3987039DOI10.1016/j.jmaa.2019.06.031
  37. Slaoui, M., Tudor, C. A., 10.1090/tpms/1070, Theory Probab. Math. Stat. 98 (2019), 183-198. (2019) Zbl1488.60136MR3824686DOI10.1090/tpms/1070
  38. Slaoui, M., Tudor, C. A., 10.1142/S021902571950022X, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 22 (2019), Articles ID 1950022, 23 pages. (2019) Zbl1436.60054MR4064931DOI10.1142/S021902571950022X
  39. Taqqu, M. S., 10.1007/BF00532868, Z. Wahrscheinlichkeitstheor. Verw. Geb. 31 (1975), 287-302. (1975) Zbl0303.60033MR0400329DOI10.1007/BF00532868
  40. Taqqu, M. S., 10.1007/BF00535674, Z. Wahrscheinlichkeitstheor. Verw. Geb. 50 (1979), 53-83. (1979) Zbl0397.60028MR0550123DOI10.1007/BF00535674
  41. Taqqu, M. S., 10.1007/978-1-4419-8339-8_6, Selected Works of Murray Rosenblatt Springer, New York (2011), 29-45. (2011) MR1455144DOI10.1007/978-1-4419-8339-8_6
  42. Temam, R., 10.1007/978-1-4612-0645-3, Applied Mathematical Sciences 68. Springer, New York (1997). (1997) Zbl0871.35001MR1441312DOI10.1007/978-1-4612-0645-3
  43. Tudor, C. A., 10.1051/ps:2007037, ESAIM, Probab. Stat. 12 (2008), 230-257. (2008) Zbl1187.60028MR2374640DOI10.1051/ps:2007037
  44. Tudor, C. A., Viens, F. G., 10.1214/09-AOP459, Ann. Probab. 37 (2009), 2093-2134. (2009) Zbl1196.60036MR2573552DOI10.1214/09-AOP459
  45. Veillette, M. S., Taqqu, M. S., 10.3150/12-BEJ421, Bernoulli 19 (2013), 982-1005 9999DOI99999 10.3150/12-BEJ421 . (2013) Zbl1273.60020MR3079303DOI10.3150/12-BEJ421

NotesEmbed ?

top

You must be logged in to post comments.