On Lyapunov stability/instability of equilibria of free damped pendulum with periodically oscillating suspension point

Jiří Šremr

Applications of Mathematics (2025)

  • Issue: 1, page 11-45
  • ISSN: 0862-7940

Abstract

top
We discuss Lyapunov stability/instability of both lower and upper equilibria of free damped pendulum with periodically oscillating suspension point. We recall the results of Bogolyubov and Kapitza, provide new effective criteria of stability/instability of the equilibria of pendulum equation, and give the exact and complete proofs. The criteria obtained are formulated in terms of positivity/negativity of Green's functions of the periodic boundary value problems for linearized equations. Furthermore, we show that if both lower and upper equilibria are stable, then the pendulum considered may possess a periodic motion that corresponds to the ``quasistatic solution'' of Bogolyubov as well as to the ``quasistatic balance'' of Kapitza.

How to cite

top

Šremr, Jiří. "On Lyapunov stability/instability of equilibria of free damped pendulum with periodically oscillating suspension point." Applications of Mathematics (2025): 11-45. <http://eudml.org/doc/299929>.

@article{Šremr2025,
abstract = {We discuss Lyapunov stability/instability of both lower and upper equilibria of free damped pendulum with periodically oscillating suspension point. We recall the results of Bogolyubov and Kapitza, provide new effective criteria of stability/instability of the equilibria of pendulum equation, and give the exact and complete proofs. The criteria obtained are formulated in terms of positivity/negativity of Green's functions of the periodic boundary value problems for linearized equations. Furthermore, we show that if both lower and upper equilibria are stable, then the pendulum considered may possess a periodic motion that corresponds to the ``quasistatic solution'' of Bogolyubov as well as to the ``quasistatic balance'' of Kapitza.},
author = {Šremr, Jiří},
journal = {Applications of Mathematics},
keywords = {second-order nonlinear differential equation; stability; instability; Floquet multiplier; Lyapunov exponent; periodic solution},
language = {eng},
number = {1},
pages = {11-45},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On Lyapunov stability/instability of equilibria of free damped pendulum with periodically oscillating suspension point},
url = {http://eudml.org/doc/299929},
year = {2025},
}

TY - JOUR
AU - Šremr, Jiří
TI - On Lyapunov stability/instability of equilibria of free damped pendulum with periodically oscillating suspension point
JO - Applications of Mathematics
PY - 2025
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 11
EP - 45
AB - We discuss Lyapunov stability/instability of both lower and upper equilibria of free damped pendulum with periodically oscillating suspension point. We recall the results of Bogolyubov and Kapitza, provide new effective criteria of stability/instability of the equilibria of pendulum equation, and give the exact and complete proofs. The criteria obtained are formulated in terms of positivity/negativity of Green's functions of the periodic boundary value problems for linearized equations. Furthermore, we show that if both lower and upper equilibria are stable, then the pendulum considered may possess a periodic motion that corresponds to the ``quasistatic solution'' of Bogolyubov as well as to the ``quasistatic balance'' of Kapitza.
LA - eng
KW - second-order nonlinear differential equation; stability; instability; Floquet multiplier; Lyapunov exponent; periodic solution
UR - http://eudml.org/doc/299929
ER -

References

top
  1. Barteneva, I. V., Cabada, A., Ignatyev, A. O., 10.1016/S0096-3003(01)00280-6, Appl. Math. Comput. 134 (2003), 173-184. (2003) Zbl1037.34014MR1928973DOI10.1016/S0096-3003(01)00280-6
  2. Bartuccelli, M. V., Gentile, G., Georgiou, K. V., 10.1098/rspa.2001.0841, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 457 (2001), 3007-3022. (2001) Zbl1001.70023MR1875091DOI10.1098/rspa.2001.0841
  3. Blackburn, J. A., Smith, H. J. T., Grønbech-Jensen, N., 10.1119/1.17011, Am. J. Phys. 60 (1992), 903-908. (1992) Zbl1219.70056MR1181951DOI10.1119/1.17011
  4. Bogatov, E. M., Mukhin, R. R., 10.18500/0869-6632-2017-25-5-69-87, Izv. VUZ, Appl. Nonlinear Dyn. 25 (2017), 69-87 Russian. (2017) DOI10.18500/0869-6632-2017-25-5-69-87
  5. Bogolyubov, N. N., Theory of perturbations in nonlinear mechanics, Collection of Works 14 Institute of Construction Mechanics, Ukrainian Academy of Sciences, Kiev (1950), 9-34 Russian. (1950) 
  6. Cabada, A., Cid, J. Á., López-Somoza, L., 10.1016/C2015-0-00688-8, Academic Press, London (2018). (2018) Zbl1393.34003MR3751358DOI10.1016/C2015-0-00688-8
  7. Dancer, E. N., Ortega, R., 10.1007/BF02218851, J. Dyn. Differ. Equations 6 (1994), 631-637. (1994) Zbl0811.34018MR1303278DOI10.1007/BF02218851
  8. Coster, C. De, Habets, P., 10.1016/s0076-5392(06)x8055-4, Mathematics in Science and Engineering 205. Elsevier, Amsterdam (2006). (2006) Zbl1330.34009MR2225284DOI10.1016/s0076-5392(06)x8055-4
  9. Demidovich, B. P., Lectures on Mathematical Stability Theory, Nauka, Moscow (1967), Russian. (1967) Zbl0155.41601MR0226126
  10. Hakl, R., Torres, P. J., 10.1016/j.amc.2011.02.053, Appl. Math. Comput. 217 (2011), 7599-7611. (2011) Zbl1235.34064MR2799774DOI10.1016/j.amc.2011.02.053
  11. Hartman, P., Ordinary Differential Equations, John Wiley & Sons, New York (1964). (1964) Zbl0125.32102MR0171038
  12. Holubová, G., 10.58997/ejde.sp.02.h2, Electron. J. Differential Equations, Special Issue 2023 (2023), 151-160. (2023) MR4803584DOI10.58997/ejde.sp.02.h2
  13. Kapitza, P. L., Dynamic stability of the pendulum with vibrating suspension point, Sov. Phys. JETP 21 (1951), 588-597 Russian. (1951) 
  14. Kapitza, P. L., Pendulum with an oscillating pivot, Usp. fiz. nauk 44 (1951), 7-20 Russian. (1951) 
  15. Komlenko, J. V., Tonkov, E. L., A periodic boundary value problem for an ordinary second-order differential equation, Dokl. Akad. Nauk SSSR 179 (1968), 17-19 Russian. (1968) Zbl0172.11604MR0226119
  16. Leonov, G. A., 10.1016/S0021-8928(98)00067-7, J. Appl. Math. Mech. 62 (1998), 511-517. (1998) MR1680316DOI10.1016/S0021-8928(98)00067-7
  17. Leonov, G. A., 10.1016/j.jappmathmech.2004.11.004, J. Appl. Math. Mech. 68 (2004), 827-838. (2004) Zbl1095.34031MR2125024DOI10.1016/j.jappmathmech.2004.11.004
  18. Leonov, G. A., Kuznetsov, N. V., 10.1142/S0218127407017732, Int. J. Bifurcation Chaos Appl. Sci. Eng. 17 (2007), 1079-1107. (2007) Zbl1142.34033MR2329516DOI10.1142/S0218127407017732
  19. Lomtatidze, A., Theorems on differential inequalities and periodic boundary value problem for second-order ordinary differential equations, Mem. Differ. Equ. Math. Phys. 67 (2016), 1-129. (2016) Zbl1352.34033MR3472904
  20. Sansone, G., Ordinary differential equations. Vol. I, Izd. Inostrannoj Literatury, Moscow (1953), Russian. (1953) MR0064221
  21. Seyranian, A. A., Seyranian, A. P., 10.1016/j.jappmathmech.2006.11.009, J. Appl. Math. Mech. 70 (2006), 754-761. (2006) Zbl1126.70361MR2319534DOI10.1016/j.jappmathmech.2006.11.009
  22. Tonkov, E. L., The second order periodic equation, Dokl. Akad. Nauk SSSR 184 (1969), 296-299 Russian. (1969) Zbl0184.12102MR0237880
  23. Torres, P. J., 10.1016/S0022-0396(02)00152-3, J. Differ. Equations 190 (2003), 643-662. (2003) Zbl1032.34040MR1970045DOI10.1016/S0022-0396(02)00152-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.