On Lyapunov stability/instability of equilibria of free damped pendulum with periodically oscillating suspension point
Applications of Mathematics (2025)
- Issue: 1, page 11-45
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topŠremr, Jiří. "On Lyapunov stability/instability of equilibria of free damped pendulum with periodically oscillating suspension point." Applications of Mathematics (2025): 11-45. <http://eudml.org/doc/299929>.
@article{Šremr2025,
abstract = {We discuss Lyapunov stability/instability of both lower and upper equilibria of free damped pendulum with periodically oscillating suspension point. We recall the results of Bogolyubov and Kapitza, provide new effective criteria of stability/instability of the equilibria of pendulum equation, and give the exact and complete proofs. The criteria obtained are formulated in terms of positivity/negativity of Green's functions of the periodic boundary value problems for linearized equations. Furthermore, we show that if both lower and upper equilibria are stable, then the pendulum considered may possess a periodic motion that corresponds to the ``quasistatic solution'' of Bogolyubov as well as to the ``quasistatic balance'' of Kapitza.},
author = {Šremr, Jiří},
journal = {Applications of Mathematics},
keywords = {second-order nonlinear differential equation; stability; instability; Floquet multiplier; Lyapunov exponent; periodic solution},
language = {eng},
number = {1},
pages = {11-45},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On Lyapunov stability/instability of equilibria of free damped pendulum with periodically oscillating suspension point},
url = {http://eudml.org/doc/299929},
year = {2025},
}
TY - JOUR
AU - Šremr, Jiří
TI - On Lyapunov stability/instability of equilibria of free damped pendulum with periodically oscillating suspension point
JO - Applications of Mathematics
PY - 2025
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 11
EP - 45
AB - We discuss Lyapunov stability/instability of both lower and upper equilibria of free damped pendulum with periodically oscillating suspension point. We recall the results of Bogolyubov and Kapitza, provide new effective criteria of stability/instability of the equilibria of pendulum equation, and give the exact and complete proofs. The criteria obtained are formulated in terms of positivity/negativity of Green's functions of the periodic boundary value problems for linearized equations. Furthermore, we show that if both lower and upper equilibria are stable, then the pendulum considered may possess a periodic motion that corresponds to the ``quasistatic solution'' of Bogolyubov as well as to the ``quasistatic balance'' of Kapitza.
LA - eng
KW - second-order nonlinear differential equation; stability; instability; Floquet multiplier; Lyapunov exponent; periodic solution
UR - http://eudml.org/doc/299929
ER -
References
top- Barteneva, I. V., Cabada, A., Ignatyev, A. O., 10.1016/S0096-3003(01)00280-6, Appl. Math. Comput. 134 (2003), 173-184. (2003) Zbl1037.34014MR1928973DOI10.1016/S0096-3003(01)00280-6
- Bartuccelli, M. V., Gentile, G., Georgiou, K. V., 10.1098/rspa.2001.0841, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 457 (2001), 3007-3022. (2001) Zbl1001.70023MR1875091DOI10.1098/rspa.2001.0841
- Blackburn, J. A., Smith, H. J. T., Grønbech-Jensen, N., 10.1119/1.17011, Am. J. Phys. 60 (1992), 903-908. (1992) Zbl1219.70056MR1181951DOI10.1119/1.17011
- Bogatov, E. M., Mukhin, R. R., 10.18500/0869-6632-2017-25-5-69-87, Izv. VUZ, Appl. Nonlinear Dyn. 25 (2017), 69-87 Russian. (2017) DOI10.18500/0869-6632-2017-25-5-69-87
- Bogolyubov, N. N., Theory of perturbations in nonlinear mechanics, Collection of Works 14 Institute of Construction Mechanics, Ukrainian Academy of Sciences, Kiev (1950), 9-34 Russian. (1950)
- Cabada, A., Cid, J. Á., López-Somoza, L., 10.1016/C2015-0-00688-8, Academic Press, London (2018). (2018) Zbl1393.34003MR3751358DOI10.1016/C2015-0-00688-8
- Dancer, E. N., Ortega, R., 10.1007/BF02218851, J. Dyn. Differ. Equations 6 (1994), 631-637. (1994) Zbl0811.34018MR1303278DOI10.1007/BF02218851
- Coster, C. De, Habets, P., 10.1016/s0076-5392(06)x8055-4, Mathematics in Science and Engineering 205. Elsevier, Amsterdam (2006). (2006) Zbl1330.34009MR2225284DOI10.1016/s0076-5392(06)x8055-4
- Demidovich, B. P., Lectures on Mathematical Stability Theory, Nauka, Moscow (1967), Russian. (1967) Zbl0155.41601MR0226126
- Hakl, R., Torres, P. J., 10.1016/j.amc.2011.02.053, Appl. Math. Comput. 217 (2011), 7599-7611. (2011) Zbl1235.34064MR2799774DOI10.1016/j.amc.2011.02.053
- Hartman, P., Ordinary Differential Equations, John Wiley & Sons, New York (1964). (1964) Zbl0125.32102MR0171038
- Holubová, G., 10.58997/ejde.sp.02.h2, Electron. J. Differential Equations, Special Issue 2023 (2023), 151-160. (2023) MR4803584DOI10.58997/ejde.sp.02.h2
- Kapitza, P. L., Dynamic stability of the pendulum with vibrating suspension point, Sov. Phys. JETP 21 (1951), 588-597 Russian. (1951)
- Kapitza, P. L., Pendulum with an oscillating pivot, Usp. fiz. nauk 44 (1951), 7-20 Russian. (1951)
- Komlenko, J. V., Tonkov, E. L., A periodic boundary value problem for an ordinary second-order differential equation, Dokl. Akad. Nauk SSSR 179 (1968), 17-19 Russian. (1968) Zbl0172.11604MR0226119
- Leonov, G. A., 10.1016/S0021-8928(98)00067-7, J. Appl. Math. Mech. 62 (1998), 511-517. (1998) MR1680316DOI10.1016/S0021-8928(98)00067-7
- Leonov, G. A., 10.1016/j.jappmathmech.2004.11.004, J. Appl. Math. Mech. 68 (2004), 827-838. (2004) Zbl1095.34031MR2125024DOI10.1016/j.jappmathmech.2004.11.004
- Leonov, G. A., Kuznetsov, N. V., 10.1142/S0218127407017732, Int. J. Bifurcation Chaos Appl. Sci. Eng. 17 (2007), 1079-1107. (2007) Zbl1142.34033MR2329516DOI10.1142/S0218127407017732
- Lomtatidze, A., Theorems on differential inequalities and periodic boundary value problem for second-order ordinary differential equations, Mem. Differ. Equ. Math. Phys. 67 (2016), 1-129. (2016) Zbl1352.34033MR3472904
- Sansone, G., Ordinary differential equations. Vol. I, Izd. Inostrannoj Literatury, Moscow (1953), Russian. (1953) MR0064221
- Seyranian, A. A., Seyranian, A. P., 10.1016/j.jappmathmech.2006.11.009, J. Appl. Math. Mech. 70 (2006), 754-761. (2006) Zbl1126.70361MR2319534DOI10.1016/j.jappmathmech.2006.11.009
- Tonkov, E. L., The second order periodic equation, Dokl. Akad. Nauk SSSR 184 (1969), 296-299 Russian. (1969) Zbl0184.12102MR0237880
- Torres, P. J., 10.1016/S0022-0396(02)00152-3, J. Differ. Equations 190 (2003), 643-662. (2003) Zbl1032.34040MR1970045DOI10.1016/S0022-0396(02)00152-3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.