Efficiency analysis of the rule-based defuzzification approach to fuzzy inference system for regression problems
Resmiye Nasiboglu; Efendi Nasibov
Kybernetika (2025)
- Issue: 1, page 109-132
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topNasiboglu, Resmiye, and Nasibov, Efendi. "Efficiency analysis of the rule-based defuzzification approach to fuzzy inference system for regression problems." Kybernetika (2025): 109-132. <http://eudml.org/doc/299934>.
@article{Nasiboglu2025,
abstract = {A fuzzy inference system (FIS) is an effective prediction method based on fuzzy logic. The performance of this model may vary depending on the defuzzification process. In the Mamdani-type FIS model, the defuzzification process is applied to the fuzzy output of the system only once at the last stage. In the FIS with rule-based defuzzification (FIS-RBD) model, the defuzzification process is applied to the fuzzy consequent part of each rule and the overall result of the system is calculated as the weighted average of the separately defuzzified results of the rules. Note that, the original shapes of the combined rule results are lost in the aggregated fuzzy result of the classical Mamdani-type system and the effect of each rule on the system result decreases when aggregated. However, rule results can affect the overall result more significantly in the FIS-RBD approach. In this study, a comparative analysis was made on the effectiveness of the classical Mamdani-type FIS and FIS-RBD models for regression problems. Five datasets from different domains and various defuzzification methods were used in comparisons. In the results obtained, it was observed that the The FIS-RBD model gave better results than the classical Mamdani-type FIS model. To carry out calculation experiments, a new Python package called Fuzlab was developed by modifying the existing Python library called FuzzyLab. In addition to creating the FIS-RBD model, the developed package also allows the use of the Weighted Average Based on Levels (WABL) defuzzification method in fuzzy logic-based calculations.},
author = {Nasiboglu, Resmiye, Nasibov, Efendi},
journal = {Kybernetika},
keywords = {fuzzy inference system (FIS); defuzzification; rule-based defuzzification (RBD); regression; Python library},
language = {eng},
number = {1},
pages = {109-132},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Efficiency analysis of the rule-based defuzzification approach to fuzzy inference system for regression problems},
url = {http://eudml.org/doc/299934},
year = {2025},
}
TY - JOUR
AU - Nasiboglu, Resmiye
AU - Nasibov, Efendi
TI - Efficiency analysis of the rule-based defuzzification approach to fuzzy inference system for regression problems
JO - Kybernetika
PY - 2025
PB - Institute of Information Theory and Automation AS CR
IS - 1
SP - 109
EP - 132
AB - A fuzzy inference system (FIS) is an effective prediction method based on fuzzy logic. The performance of this model may vary depending on the defuzzification process. In the Mamdani-type FIS model, the defuzzification process is applied to the fuzzy output of the system only once at the last stage. In the FIS with rule-based defuzzification (FIS-RBD) model, the defuzzification process is applied to the fuzzy consequent part of each rule and the overall result of the system is calculated as the weighted average of the separately defuzzified results of the rules. Note that, the original shapes of the combined rule results are lost in the aggregated fuzzy result of the classical Mamdani-type system and the effect of each rule on the system result decreases when aggregated. However, rule results can affect the overall result more significantly in the FIS-RBD approach. In this study, a comparative analysis was made on the effectiveness of the classical Mamdani-type FIS and FIS-RBD models for regression problems. Five datasets from different domains and various defuzzification methods were used in comparisons. In the results obtained, it was observed that the The FIS-RBD model gave better results than the classical Mamdani-type FIS model. To carry out calculation experiments, a new Python package called Fuzlab was developed by modifying the existing Python library called FuzzyLab. In addition to creating the FIS-RBD model, the developed package also allows the use of the Weighted Average Based on Levels (WABL) defuzzification method in fuzzy logic-based calculations.
LA - eng
KW - fuzzy inference system (FIS); defuzzification; rule-based defuzzification (RBD); regression; Python library
UR - http://eudml.org/doc/299934
ER -
References
top- Aggarwal, A., Chakradar, M., Bhatia, M. S., Kumar, M., Stephan, T., Gupta, S. K., Alsamhi, H. S., AL-Dois, H., , J. Healthcare Engrg. (2022), Article ID 4096950. DOI
- Amrahov, S. E., Ar, Y., Tugrul, B., Akay, B. E., Kartli, N., , Future Generation Computer Systems 157 (2024), 330-343. DOI
- Ansarifar, J., Wang, L., Archontoulis, S. V., , Scientific Reports 11 (2021), Article ID 17754. DOI
- Ao, Y., Li, H., Zhu, L., Ali, S., Yang, Z., , J. Petroleum Sci. Engrg. 174 (2019), 776-789. DOI
- Ar, Y., Amrahov, S. E., Gasilov, N. A., Yigit-Sert, S., , Kybernetika 58 (2022), 3, 440-455. DOI
- Avelar, E., Castillo, O., Soria, J., , J. Automat. Mobile Robotics Intell. Systems 14 (2019), 1, 48-54. DOI
- Avelar, E., FuzzyLab.
- Bas, E., Egrioglu, E., , Inform. Sci. 592 (2022), 206-214. DOI
- Bas, E., , Inform. Sci. 613 (2022), 419-434. DOI
- Bejines, C., , Kybernetika 59 (2023), 5, 752-767. MR4681021DOI
- Chakraverty, S., Sahoo, D. M., Mahato, N. R., , In: Concepts of Soft Computing, Springer, Singapore 2019. DOI
- Charizanos, G., Demirhan, H., İçen, D., , Inform. Sci. 655 (2024), 119893. DOI
- Cruz-Suárez, H., Montes-de-Oca, R., Ortega-Gutiérrez, R. I., , Kybernetika 59 (2023), 1, 160-178. MR4567846DOI
- Ding, W., Wang, J., Huang, J., Cheng, C., Jiang, S., , Inform. Sci. 687 (2025), 121376. DOI
- Doz, D., Cotič, M., Felda, D., , Mathematics 11 (2023), 19, 4129. DOI
- Fiskin, R., Atik, O., Kisi, H., Nasibov, E., Johansen, T. A., , Ocean Engrg. 220 (2021), 108502. DOI
- Gao, K., Xu, L., , Expert Syst. Appl. 237 (2024), 121532. DOI
- Gao, T., Liu, J., , J. Intell. Fuzzy Syst. 40 (2021), 2, 2041-2053. DOI
- Gasilov, N. A., Amrahov, S. E., Fatullayev, A. G., , Int. J. Thermal Sci. 103 (2016), 67-76. DOI
- Gasilov, N., Doğan, M., Arici, V., , IETE J. Res. 57 (2011), 3, 278-285. DOI
- Gilda, K. S., Satarkar, S. L., Analytical overview of defuzzification methods., Int. J. Advance Res. Ideas Innova. Technol. 6 (2020), 2, 359-365.
- Gu, X., Angelov, P. P., Shen, Q., 10.1109/TFUZZ.2024.3349637, IEEE Trans. Fuzzy Systems 32 (2024), 4, 2318-2330. DOI10.1109/TFUZZ.2024.3349637
- Guan, X., Yu, F., Xu, H., Li, C., Guan, Y., Flood risk assessment of urban metro system using random forest algorithm and triangular fuzzy number based analytical hierarchy process approach., Sustainable Cities Soc. 109 (2024), 105546.
- Jang, J. S. R., Sun, C. T., Mizutani, E., Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence., Prentice-Hall, 1997.
- Karaboga, D., Kaya, E., 10.1007/s10462-017-9610-2, Artif. Intell. Rev. 52 (2019), 2263-2293. DOI10.1007/s10462-017-9610-2
- Kartli, N., Bostanci, E., Guzel, M. S., , Kybernetika 59 (2023), 1, 45-63. MR4567841DOI
- Kartli, N., Bostanci, E., Guzel, M. S., , Computing 106 (2024), 10, 3195-3227. MR4794582DOI
- Kelley, P. R., Barry, R., 10.1016/S0167-7152(96)00140-X, Statisr. Probab. Lett. 33 (1997), 3, 291-297. DOI10.1016/S0167-7152(96)00140-X
- Kondratenko, Y., Kozlov, O., Lysiuk, H., Kryvda, V., Maksymova, O., Fuzzy automatic control of the pyrolysis process for the municipal solid waste of variable composition., J. Automat. Mobile Robotics Intell. Systems 16 (2022), 1, 83-94.
- Kusumadewi, S., Rosita, L., Wahyuni, E. G., , Int. J. Advanced Sci. Engrg. Inform. Technol. 12 (2022), 5, 2140. DOI
- Kusumadewi, S., Rosita, L., Wahyuni, E. G., , Expert Syst. Appl. 227 (2023), 120314. DOI
- Li, G., Hu, X., Chen, S., Chang, K., Li, P., Wang, Y., , Int. J. Comput. Commun. Control 19 (2024), 4, 6611. DOI
- Mallick, A. K., Das, A., , In: 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON), Kuala Lumpur 2021. pp. 1-6. DOI
- Mei, Z., Zhao, T., Xie, X., 10.1016/j.ins.2023.119740, Inform. Sci. 652 (2024), 119740. DOI10.1016/j.ins.2023.119740
- Mert, A., 10.1080/16583655.2020.1804157, J. Taibah Univ. Sci. 14 (2020), 1, 1100-1109. DOI10.1080/16583655.2020.1804157
- Nachaoui, M., Nachaoui, A., Shikhlinskaya, R. Y., Elmoufidi, A., 10.19139/soic-2310-5070-1706, Statist. Optim. Inform. Comput. 11 (2023), 1, 29-43. DOI10.19139/soic-2310-5070-1706
- Namgung, H., Ohn, S. W., , Sensors 22 (2022), 13. DOI
- Nasiboglu, R., Abdullayeva, R., 10.5121/ijsc.2018.9301, Int. J. Soft Comput. (IJSC) 9 (2018), 2/3, 1-15. DOI10.5121/ijsc.2018.9301
- Nasiboglu, R., Akdogan, A., Estimation of the second hand car prices from data extracted via web scraping techniques., J. Modern Technol. Engrg. 5 (2020), 2, 157-166.
- Nasiboglu, R., Erten, Z. T., 10.3906/elk-1811-142, Turkish J. Electr. Engrg. Computer Sci. 27 (2019), 6, 4023-4037. DOI10.3906/elk-1811-142
- Nasiboglu, R., Nasibov, E., 10.1016/j.simpa.2022.100430, Software Impacts 14 (2022), 100430. DOI10.1016/j.simpa.2022.100430
- Nasiboglu, R., Nasibov, E., 10.1016/j.eswa.2022.118771, Expert Syst. Appl. 212 (2023), 118771. DOI10.1016/j.eswa.2022.118771
- Nasiboglu, R., A novel fuzzy inference model with rule-based defuzzification approach., J. Modern Technol. Engrg. 7 (2022), 2, 124-133.
- Nasiboglu, R., An approach to solution of verbal stated mathematical problems., J. Modern Technol. Engrg. 5 (2020), 1, 25-35.
- Nasiboglu, R., Analysis of different approaches to regression problem with fuzzy information., J. Modern Technol. Engrg. 7 (2022), 3, 187-198.
- Nasibov, E. N., Kinay, A. O., , Inform. Sci. 179 (2009), 5, 688-698. DOI
- Nasibov, E. N., Mert, A., , Automat. Control Computer Sci. 41 (2007), 265-273. DOI
- Pourabdollah, A., Mendel, J. M., John, R. I., Alpha-cut representation used for defuzzification in rule-based systems., Fuzzy Sets Syst. 399 (2020), 110-132. MR4154438
- Ramly, N., Rusiman, M. S., Nasibov, E., Nasiboglu, R., 10.37934/araset.46.1.218236, J. Advanced Res. Appl. Sci. Engrg. Technol. 46 (2024), 1, 218-236. DOI10.37934/araset.46.1.218236
- Rashidi, S., Xu, W., Lin, D., Turpin, A., Kulik, L., Ehinger, K., An active foveated gaze prediction algorithm based on a Bayesian ideal observer., Pattern Recogn. 143 (2023), 109694.
- Riman, C. F., Abi-Char, P. E., 10.18178/ijmerr.12.5.313-323, Int. J. Mechan. Engrg. Robotics Res. 12 (2023), 5, 313-323. DOI10.18178/ijmerr.12.5.313-323
- Savaş, S. K., Nasibov, E. N., , Int. J. Intell. Syst. 33 (2018), 858-878. DOI
- Samet, R., Amrahov, S. E., Ziroğlu, A. H., , In: 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA), Istanbul 2012. pp. 402-406. DOI
- Tian, Y., Nie, G., Tian, H., Cui, Q., 10.1007/s00607-022-01115-z, Computing 105 (2023), 1, 115-129. MR4530130DOI10.1007/s00607-022-01115-z
- Vafakhah, M., Loor, S. M. H., Pourghasemi, H., Katebikord, A., Comparing performance of random forest and adaptive neuro-fuzzy inference system data mining models for flood susceptibility mapping., Arabian J. Geosci. 13 (2020), 1-16.
- Wahba, M., Essam, R., El-Rawy, M., Al-Arifi, N., Abdalla, F., Elsadek, W. M., , Heliyon 10 (2024), 13, e33982. DOI
- Yagiz, S., Gokceoglu, C., 10.1016/j.eswa.2009.07.046, Expert Systems Appl. 37 (2010), 2265-2272. DOI10.1016/j.eswa.2009.07.046
- Yazid, E., Garratt, M., Santoso, F., , Appl. Soft Comput. 78 (2019), 373-392. DOI
- Yıldırım, H. B., Kullu, K., Amrahov, S. E., , Univ. Acces Inform. Soc. 23 (2024), 2, 901-911. DOI
- Zhang, H., Hu, X., Zhu, X., Liu, X., Pedrycz, W., , IEEE Trans. Knowl. Data Engrg. 36 (2024), 5621-5632. DOI
- Zhang, Q., Yao, Y., Kong, J., Ma, X., Zhu, H., , IEEE Trans. Geosci. Remote Sensing 61 (2023), 1-12. DOI
- Zhu, X., Hu, X., Yang, L., Pedrycz, W., Li, Z., , IEEE Trans. Fuzzy Systems 32 (2024), 5, 2976-2986. DOI
- Zimmermann, K., , Kybernetika 59 (2023), 4, 527-536. MR4660376DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.