A new algorithm for optimal solution of fixed charge transportation problem

Nermin Kartli; Erkan Bostanci; Mehmet Serdar Guzel

Kybernetika (2023)

  • Volume: 59, Issue: 1, page 45-63
  • ISSN: 0023-5954

Abstract

top
Fixed charge transportation problem (FCTP) is a supply chain problem. In this problem, in addition to the cost per unit for each transported product, a fixed cost is also required. The aim is to carry out the transportation process at the lowest possible cost. As with all supply chain problems, this problem may have one, two, or three stages. An algorithm that can find the optimal solution for the problem in polynomial time is not known, even if it is a single-stage problem. For this reason, new algorithms have been proposed in recent years to provide an approximate solution for the problem. The vast majority of these algorithms are meta-heuristic algorithms. In this study, we propose a new heuristic algorithm to find an optimal solution for the 1-stage FCTP. We compare the results of our algorithm with the results of other existing algorithms.

How to cite

top

Kartli, Nermin, Bostanci, Erkan, and Guzel, Mehmet Serdar. "A new algorithm for optimal solution of fixed charge transportation problem." Kybernetika 59.1 (2023): 45-63. <http://eudml.org/doc/299076>.

@article{Kartli2023,
abstract = {Fixed charge transportation problem (FCTP) is a supply chain problem. In this problem, in addition to the cost per unit for each transported product, a fixed cost is also required. The aim is to carry out the transportation process at the lowest possible cost. As with all supply chain problems, this problem may have one, two, or three stages. An algorithm that can find the optimal solution for the problem in polynomial time is not known, even if it is a single-stage problem. For this reason, new algorithms have been proposed in recent years to provide an approximate solution for the problem. The vast majority of these algorithms are meta-heuristic algorithms. In this study, we propose a new heuristic algorithm to find an optimal solution for the 1-stage FCTP. We compare the results of our algorithm with the results of other existing algorithms.},
author = {Kartli, Nermin, Bostanci, Erkan, Guzel, Mehmet Serdar},
journal = {Kybernetika},
keywords = {supply chain; transportation problem; fixed charge transportation problem; feasible solution; optimal solution},
language = {eng},
number = {1},
pages = {45-63},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A new algorithm for optimal solution of fixed charge transportation problem},
url = {http://eudml.org/doc/299076},
volume = {59},
year = {2023},
}

TY - JOUR
AU - Kartli, Nermin
AU - Bostanci, Erkan
AU - Guzel, Mehmet Serdar
TI - A new algorithm for optimal solution of fixed charge transportation problem
JO - Kybernetika
PY - 2023
PB - Institute of Information Theory and Automation AS CR
VL - 59
IS - 1
SP - 45
EP - 63
AB - Fixed charge transportation problem (FCTP) is a supply chain problem. In this problem, in addition to the cost per unit for each transported product, a fixed cost is also required. The aim is to carry out the transportation process at the lowest possible cost. As with all supply chain problems, this problem may have one, two, or three stages. An algorithm that can find the optimal solution for the problem in polynomial time is not known, even if it is a single-stage problem. For this reason, new algorithms have been proposed in recent years to provide an approximate solution for the problem. The vast majority of these algorithms are meta-heuristic algorithms. In this study, we propose a new heuristic algorithm to find an optimal solution for the 1-stage FCTP. We compare the results of our algorithm with the results of other existing algorithms.
LA - eng
KW - supply chain; transportation problem; fixed charge transportation problem; feasible solution; optimal solution
UR - http://eudml.org/doc/299076
ER -

References

top
  1. Adlakha, V., Kowalski, K., , Omega 27 (1999), 3, 381-388. DOI
  2. Adlakha, V., Kowalski, K., , Omega 31 (2003), 3, 205-211. DOI
  3. Adlakha, V., Kowalski, K., Vemuganti, R. R., 10.1007/BF03398770, Opsearch 43 (2006), 2, 132-151. MR2764169DOI10.1007/BF03398770
  4. Adlakha, V., Kowalski, K., Lev, B., , Omega 38 (2010), 5, 393-397. MR2764169DOI
  5. Adlakha, V., Kowalski, K., Vemuganti, R. R., Lev, B., , Omega: Int. J. Manag. Sci. 35 (2007), 1, 116-127. DOI
  6. Allen, W. B., Liu, D., An inventory-transport model with uncertain loss and damage., Logist.Transport. Rev. 29 (1993), 2, 101. 
  7. Amorim, P., Meyr, H., Almeder, C., Almada-Lobo, B., Managing perishability in production-distribution planning: a discussion and review., Flexible Services Manufactur. J. 25 (1993), 3, 389-413. 
  8. Amin, S. H., Baki, F., , Appl. Math. Modell. 41 (2017), 316-330. MR3580570DOI
  9. Balinski, M. L., , Naval Res. Logistic Quarterly 8 (1961), 1, 41-54. DOI
  10. Calvete, H. I., Gale, C., Iranzo, J. A., Toth, P., , Comput. Oper. Res. 95 (2018), 113-122. MR3789199DOI
  11. Cosma, O., Pop, P. C., Dănciulescu, D., , Comput. Oper. Res. 118 (2020), 104906. MR4067956DOI
  12. El-Sherbiny, M. M., Alhamali, R. M., , Comput. Industr, Engrg. 64 (2013), 2, 610-620. DOI
  13. Eskandarpour, M., Dejax, P., Peton, O., , Comput. Oper. Res. 8 (2017), 4, 23-37. MR3590606DOI
  14. Gottlieb, J., Paulmann, L., , In: Proc. of the IEEE Conf. on Evolutionary Computation, ICEC 1998, pp. 330-335. DOI
  15. Hitchcock, F. L., , J. Math. Physics 20 (1941), 224-230. MR0004469DOI
  16. Hirsch, W. M., Dantzig, G. B., , Naval Res. Log. Quart. 15 (1968), 413-424. MR0258464DOI
  17. Hong, J., Diabat, A., Panicker, V. V., Rajagopalan, S., , Int. J. Product. Econom. 204 (2018), 214-226. DOI
  18. Jawahar, N., Balaji, A. N., , Europ. J. Oper. Res. 194 (2009), 2, 496-537. DOI
  19. Jawahar, N., Gunasekaran, A., Balaji, N., , Int. J. Prod. Res. 50 (2011), 9, 2533-2554. DOI
  20. Jo, J. B., Li, Y., Y., Gen, M., , Comput. Industr. Engrg. 53 (2007), 2, 290-298. DOI
  21. Kartlı, N., Bostancı, E., Güzel, M. S., , In: 7th International Conference on Computer Science and Engineering (UBMK), IEEE 2022, pp. 82-85. DOI
  22. Li, P., , Kybernetika 57 (2021), 4, 568-593. DOI
  23. Lin, V., , Kybernetika 53 (2017), 3, 493-512. MR3684682DOI
  24. Lotfi, M. M., Tavakkoli-Moghaddam, R., , Appl. Soft Comput. 13 (2013), 5, 2711-2726. DOI
  25. Panicker, V. V., Vanga, R., Sridharan, R., , Int. J. Prod. Res. 51 (2012), 3, 698-717. DOI
  26. Panicker, V. V., Sridharan, R., Ebenezer, B., , J. Manuf. Technol. Manag. 23 (2012), 7, 853-868. DOI
  27. Pop, P. C., Sabo, C., Biesinger, B., Hu, B., Raidl, G. R., Solving the two-stage fixed charge transportation problem with a hybrid genetic algorithm., Carpathian J. Math. 33 (2017), 3, 36-371. MR3728059
  28. Raj, K. A. A. D., Rajendran, C., , Technol. Oper. Manag. 2 (2011), 1, 1-15. DOI
  29. Raj, K. A. A. D., Rajendran, C., , Comput. Oper. Res. 39 (2012), 9, 2016-2032. DOI
  30. Singh, G., Singh, A., , Int. J. System Assurance Engrg. Management 12 (2021), (6), 1073-1086. DOI
  31. Sun, M., Aronson, J. E., Mckeown, P. G., Drinka, D., , Europ. J. Oper. Res. 106 (1999), 2-3, 411-456. DOI
  32. Tari, F. G., Hashemi, I., , Comput. Industr. Engrg. 126 (2018), 63-74. DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.