A new algorithm for optimal solution of fixed charge transportation problem
Nermin Kartli; Erkan Bostanci; Mehmet Serdar Guzel
Kybernetika (2023)
- Volume: 59, Issue: 1, page 45-63
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topKartli, Nermin, Bostanci, Erkan, and Guzel, Mehmet Serdar. "A new algorithm for optimal solution of fixed charge transportation problem." Kybernetika 59.1 (2023): 45-63. <http://eudml.org/doc/299076>.
@article{Kartli2023,
abstract = {Fixed charge transportation problem (FCTP) is a supply chain problem. In this problem, in addition to the cost per unit for each transported product, a fixed cost is also required. The aim is to carry out the transportation process at the lowest possible cost. As with all supply chain problems, this problem may have one, two, or three stages. An algorithm that can find the optimal solution for the problem in polynomial time is not known, even if it is a single-stage problem. For this reason, new algorithms have been proposed in recent years to provide an approximate solution for the problem. The vast majority of these algorithms are meta-heuristic algorithms. In this study, we propose a new heuristic algorithm to find an optimal solution for the 1-stage FCTP. We compare the results of our algorithm with the results of other existing algorithms.},
author = {Kartli, Nermin, Bostanci, Erkan, Guzel, Mehmet Serdar},
journal = {Kybernetika},
keywords = {supply chain; transportation problem; fixed charge transportation problem; feasible solution; optimal solution},
language = {eng},
number = {1},
pages = {45-63},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A new algorithm for optimal solution of fixed charge transportation problem},
url = {http://eudml.org/doc/299076},
volume = {59},
year = {2023},
}
TY - JOUR
AU - Kartli, Nermin
AU - Bostanci, Erkan
AU - Guzel, Mehmet Serdar
TI - A new algorithm for optimal solution of fixed charge transportation problem
JO - Kybernetika
PY - 2023
PB - Institute of Information Theory and Automation AS CR
VL - 59
IS - 1
SP - 45
EP - 63
AB - Fixed charge transportation problem (FCTP) is a supply chain problem. In this problem, in addition to the cost per unit for each transported product, a fixed cost is also required. The aim is to carry out the transportation process at the lowest possible cost. As with all supply chain problems, this problem may have one, two, or three stages. An algorithm that can find the optimal solution for the problem in polynomial time is not known, even if it is a single-stage problem. For this reason, new algorithms have been proposed in recent years to provide an approximate solution for the problem. The vast majority of these algorithms are meta-heuristic algorithms. In this study, we propose a new heuristic algorithm to find an optimal solution for the 1-stage FCTP. We compare the results of our algorithm with the results of other existing algorithms.
LA - eng
KW - supply chain; transportation problem; fixed charge transportation problem; feasible solution; optimal solution
UR - http://eudml.org/doc/299076
ER -
References
top- Adlakha, V., Kowalski, K., , Omega 27 (1999), 3, 381-388. DOI
- Adlakha, V., Kowalski, K., , Omega 31 (2003), 3, 205-211. DOI
- Adlakha, V., Kowalski, K., Vemuganti, R. R., 10.1007/BF03398770, Opsearch 43 (2006), 2, 132-151. MR2764169DOI10.1007/BF03398770
- Adlakha, V., Kowalski, K., Lev, B., , Omega 38 (2010), 5, 393-397. MR2764169DOI
- Adlakha, V., Kowalski, K., Vemuganti, R. R., Lev, B., , Omega: Int. J. Manag. Sci. 35 (2007), 1, 116-127. DOI
- Allen, W. B., Liu, D., An inventory-transport model with uncertain loss and damage., Logist.Transport. Rev. 29 (1993), 2, 101.
- Amorim, P., Meyr, H., Almeder, C., Almada-Lobo, B., Managing perishability in production-distribution planning: a discussion and review., Flexible Services Manufactur. J. 25 (1993), 3, 389-413.
- Amin, S. H., Baki, F., , Appl. Math. Modell. 41 (2017), 316-330. MR3580570DOI
- Balinski, M. L., , Naval Res. Logistic Quarterly 8 (1961), 1, 41-54. DOI
- Calvete, H. I., Gale, C., Iranzo, J. A., Toth, P., , Comput. Oper. Res. 95 (2018), 113-122. MR3789199DOI
- Cosma, O., Pop, P. C., Dănciulescu, D., , Comput. Oper. Res. 118 (2020), 104906. MR4067956DOI
- El-Sherbiny, M. M., Alhamali, R. M., , Comput. Industr, Engrg. 64 (2013), 2, 610-620. DOI
- Eskandarpour, M., Dejax, P., Peton, O., , Comput. Oper. Res. 8 (2017), 4, 23-37. MR3590606DOI
- Gottlieb, J., Paulmann, L., , In: Proc. of the IEEE Conf. on Evolutionary Computation, ICEC 1998, pp. 330-335. DOI
- Hitchcock, F. L., , J. Math. Physics 20 (1941), 224-230. MR0004469DOI
- Hirsch, W. M., Dantzig, G. B., , Naval Res. Log. Quart. 15 (1968), 413-424. MR0258464DOI
- Hong, J., Diabat, A., Panicker, V. V., Rajagopalan, S., , Int. J. Product. Econom. 204 (2018), 214-226. DOI
- Jawahar, N., Balaji, A. N., , Europ. J. Oper. Res. 194 (2009), 2, 496-537. DOI
- Jawahar, N., Gunasekaran, A., Balaji, N., , Int. J. Prod. Res. 50 (2011), 9, 2533-2554. DOI
- Jo, J. B., Li, Y., Y., Gen, M., , Comput. Industr. Engrg. 53 (2007), 2, 290-298. DOI
- Kartlı, N., Bostancı, E., Güzel, M. S., , In: 7th International Conference on Computer Science and Engineering (UBMK), IEEE 2022, pp. 82-85. DOI
- Li, P., , Kybernetika 57 (2021), 4, 568-593. DOI
- Lin, V., , Kybernetika 53 (2017), 3, 493-512. MR3684682DOI
- Lotfi, M. M., Tavakkoli-Moghaddam, R., , Appl. Soft Comput. 13 (2013), 5, 2711-2726. DOI
- Panicker, V. V., Vanga, R., Sridharan, R., , Int. J. Prod. Res. 51 (2012), 3, 698-717. DOI
- Panicker, V. V., Sridharan, R., Ebenezer, B., , J. Manuf. Technol. Manag. 23 (2012), 7, 853-868. DOI
- Pop, P. C., Sabo, C., Biesinger, B., Hu, B., Raidl, G. R., Solving the two-stage fixed charge transportation problem with a hybrid genetic algorithm., Carpathian J. Math. 33 (2017), 3, 36-371. MR3728059
- Raj, K. A. A. D., Rajendran, C., , Technol. Oper. Manag. 2 (2011), 1, 1-15. DOI
- Raj, K. A. A. D., Rajendran, C., , Comput. Oper. Res. 39 (2012), 9, 2016-2032. DOI
- Singh, G., Singh, A., , Int. J. System Assurance Engrg. Management 12 (2021), (6), 1073-1086. DOI
- Sun, M., Aronson, J. E., Mckeown, P. G., Drinka, D., , Europ. J. Oper. Res. 106 (1999), 2-3, 411-456. DOI
- Tari, F. G., Hashemi, I., , Comput. Industr. Engrg. 126 (2018), 63-74. DOI
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.