A generalization of the mean-square derivative for fuzzy stochastic processes and some properties

Hadi Amirnia; Alireza Khastan

Kybernetika (2025)

  • Issue: 1, page 79-108
  • ISSN: 0023-5954

Abstract

top
The purpose of this paper is to generalize and develop a mean-square calculus for fuzzy stochastic processes and study their differentiability and integrability properties. Some results for second-order fuzzy stochastic processes are presented.

How to cite

top

Amirnia, Hadi, and Khastan, Alireza. "A generalization of the mean-square derivative for fuzzy stochastic processes and some properties." Kybernetika (2025): 79-108. <http://eudml.org/doc/299938>.

@article{Amirnia2025,
abstract = {The purpose of this paper is to generalize and develop a mean-square calculus for fuzzy stochastic processes and study their differentiability and integrability properties. Some results for second-order fuzzy stochastic processes are presented.},
author = {Amirnia, Hadi, Khastan, Alireza},
journal = {Kybernetika},
keywords = {fuzzy numbers; Hukuhara difference; random variables; second-order fuzzy stochastic processes; mean-square calculus},
language = {eng},
number = {1},
pages = {79-108},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A generalization of the mean-square derivative for fuzzy stochastic processes and some properties},
url = {http://eudml.org/doc/299938},
year = {2025},
}

TY - JOUR
AU - Amirnia, Hadi
AU - Khastan, Alireza
TI - A generalization of the mean-square derivative for fuzzy stochastic processes and some properties
JO - Kybernetika
PY - 2025
PB - Institute of Information Theory and Automation AS CR
IS - 1
SP - 79
EP - 108
AB - The purpose of this paper is to generalize and develop a mean-square calculus for fuzzy stochastic processes and study their differentiability and integrability properties. Some results for second-order fuzzy stochastic processes are presented.
LA - eng
KW - fuzzy numbers; Hukuhara difference; random variables; second-order fuzzy stochastic processes; mean-square calculus
UR - http://eudml.org/doc/299938
ER -

References

top
  1. Anastassiou, G., Gal, G. S., On a fuzzy trigonometric approximation theorem of Weierstrass-type., J. Fuzzy Math. (2001), 701-708. MR1859551
  2. Bede, B., Gal, S. G., , Fuzzy Sets Syst. 147 (2004), 3, 385-403. MR2100833DOI
  3. Bede, B., Gal, S. G., , Fuzzy Sets Syst. 151 (2005), 3, 581-599. MR2126175DOI
  4. Bede, B., Rudas, I. J., Bencsik, A. L., , Inform. Sci. 177 (2007), 7, 1648-1662. MR2303177DOI
  5. Chalco-Cano, Y., Maqui-Huamán, G. G., Silva, G., Jimenez-Gamero, M., , Fuzzy Sets Syst. 375 (2019), 53-69. MR3999369DOI
  6. Dubois, D., Prade, H., , Fuzzy Sets Syst. 8 (1982), 3, 225-233. MR0669414DOI
  7. Feng, Y., , Fuzzy Sets Syst. 102 (1999), 2, 271-280. MR1674963DOI
  8. Feng, Y., , Fuzzy Sets Syst. 103 (1999), 3, 435-441. Zbl0939.60027MR1669281DOI
  9. Feng, Y., , Fuzzy Sets Syst. 110 (2000), 1, 27-41. MR1748106DOI
  10. Feng, Y., , Fuzzy Sets Syst. 115 (2000), 3, 351-363. MR1781454DOI
  11. Feng, Y., Hu, L., Shu, H., , Fuzzy Sets Systems 120 (2001), 3, 487-497. Zbl0984.60029MR1829266DOI
  12. Friedman, M., Ma, M., Kandel, A., Fuzzy derivatives and fuzzy Cauchy problems using LP metric., In: Fuzzy Logic Foundations and Industrial Applications (D. Ruan, ed.), Springer, Boston 1996, pp. 57-72. 
  13. Gasilov, N., , Kybernetika 58 (2022), 376-399. MR4494097DOI
  14. Gasilov, N., Amrahov, S. Emrah, Fatullayev, A. Golayoglu, , Fuzzy Sets Syst. 257 (2014), 169-183. MR3267136DOI
  15. Gopal, D., Moreno, J. M., López, R. R., , Kybernetika 60 (2024), 394-411. MR4777315DOI
  16. Goetschel, R., Voxman, W., , Fuzzy Sets Syst. 18 (1986), 1, 31-43. Zbl0626.26014MR0825618DOI
  17. Kaleva, O., , Fuzzy Sets Syst. 17 (1985), 1, 53-65. Zbl0584.54004MR0808463DOI
  18. Kaleva, O., , Fuzzy Sets Syst. 24 (1987), 3, 301-317. Zbl1100.34500MR0919058DOI
  19. Kratschmer, V., , Fuzzy Sets Syst. 126 (2002), 2, 253-263. MR1884692DOI
  20. Malinowski, M. T., , Inform. Sci. 252 (2013), 62-80. MR3123920DOI
  21. Mazandarani, M., Xiu, L., , IEEE Access 9 (2021), 62195-62211. DOI
  22. Ming, M., , Fuzzy Sets Syst. 55 (1993), 3, 313-318. MR1223869DOI
  23. Nguyen, H. T., , J. Math. Anal. Appl. 64 (1978), 2, 369-380. Zbl0377.04004MR0480044DOI
  24. Puri, M. L., Ralescu, D. A., , J. Math. Anal. Appl. 91 (1983), 2, 552-558. MR0690888DOI
  25. Puri, M. L., Ralescu, D. A., , J. Math. Anal. Appl. 114 (1986), 2, 409-422. Zbl0605.60038MR0833596DOI
  26. Puri, M. L., Ralescu, D. A., 10.1016/0022-247X(91)90293-9, J. Math. Anal. Appl. 160 (1991), 1, 107-122. Zbl0737.60005MR1124080DOI10.1016/0022-247X(91)90293-9
  27. Rojas-Medar, M., Jimenez-Gamero, M., Chalco-Cano, Y., Viera-Brandao, A., , Fuzzy Sets Syst. 152 (2005), 2, 173-190. MR2138505DOI
  28. Seikkala, S., , Fuzzy Sets Syst. 24 (1987), 3, 319-330. MR0919059DOI
  29. Stefanini, L., Bede, B., , Nonlinear Analysis: Theory Methods Appl. 71 (2009), 3, 1311-1328. MR2527548DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.