A generalization of the mean-square derivative for fuzzy stochastic processes and some properties

Hadi Amirnia; Alireza Khastan

Kybernetika (2025)

  • Issue: 1, page 79-108
  • ISSN: 0023-5954

Abstract

top
The purpose of this paper is to generalize and develop a mean-square calculus for fuzzy stochastic processes and study their differentiability and integrability properties. Some results for second-order fuzzy stochastic processes are presented.

How to cite

top

Amirnia, Hadi, and Khastan, Alireza. "A generalization of the mean-square derivative for fuzzy stochastic processes and some properties." Kybernetika (2025): 79-108. <http://eudml.org/doc/299938>.

@article{Amirnia2025,
abstract = {The purpose of this paper is to generalize and develop a mean-square calculus for fuzzy stochastic processes and study their differentiability and integrability properties. Some results for second-order fuzzy stochastic processes are presented.},
author = {Amirnia, Hadi, Khastan, Alireza},
journal = {Kybernetika},
keywords = {fuzzy numbers; Hukuhara difference; random variables; second-order fuzzy stochastic processes; mean-square calculus},
language = {eng},
number = {1},
pages = {79-108},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A generalization of the mean-square derivative for fuzzy stochastic processes and some properties},
url = {http://eudml.org/doc/299938},
year = {2025},
}

TY - JOUR
AU - Amirnia, Hadi
AU - Khastan, Alireza
TI - A generalization of the mean-square derivative for fuzzy stochastic processes and some properties
JO - Kybernetika
PY - 2025
PB - Institute of Information Theory and Automation AS CR
IS - 1
SP - 79
EP - 108
AB - The purpose of this paper is to generalize and develop a mean-square calculus for fuzzy stochastic processes and study their differentiability and integrability properties. Some results for second-order fuzzy stochastic processes are presented.
LA - eng
KW - fuzzy numbers; Hukuhara difference; random variables; second-order fuzzy stochastic processes; mean-square calculus
UR - http://eudml.org/doc/299938
ER -

References

top
  1. Anastassiou, G., Gal, G. S., On a fuzzy trigonometric approximation theorem of Weierstrass-type., J. Fuzzy Math. (2001), 701-708. MR1859551
  2. Bede, B., Gal, S. G., , Fuzzy Sets Syst. 147 (2004), 3, 385-403. MR2100833DOI
  3. Bede, B., Gal, S. G., , Fuzzy Sets Syst. 151 (2005), 3, 581-599. MR2126175DOI
  4. Bede, B., Rudas, I. J., Bencsik, A. L., , Inform. Sci. 177 (2007), 7, 1648-1662. MR2303177DOI
  5. Chalco-Cano, Y., Maqui-Huamán, G. G., Silva, G., Jimenez-Gamero, M., , Fuzzy Sets Syst. 375 (2019), 53-69. MR3999369DOI
  6. Dubois, D., Prade, H., , Fuzzy Sets Syst. 8 (1982), 3, 225-233. MR0669414DOI
  7. Feng, Y., , Fuzzy Sets Syst. 102 (1999), 2, 271-280. MR1674963DOI
  8. Feng, Y., , Fuzzy Sets Syst. 103 (1999), 3, 435-441. Zbl0939.60027MR1669281DOI
  9. Feng, Y., , Fuzzy Sets Syst. 110 (2000), 1, 27-41. MR1748106DOI
  10. Feng, Y., , Fuzzy Sets Syst. 115 (2000), 3, 351-363. MR1781454DOI
  11. Feng, Y., Hu, L., Shu, H., , Fuzzy Sets Systems 120 (2001), 3, 487-497. Zbl0984.60029MR1829266DOI
  12. Friedman, M., Ma, M., Kandel, A., Fuzzy derivatives and fuzzy Cauchy problems using LP metric., In: Fuzzy Logic Foundations and Industrial Applications (D. Ruan, ed.), Springer, Boston 1996, pp. 57-72. 
  13. Gasilov, N., , Kybernetika 58 (2022), 376-399. MR4494097DOI
  14. Gasilov, N., Amrahov, S. Emrah, Fatullayev, A. Golayoglu, , Fuzzy Sets Syst. 257 (2014), 169-183. MR3267136DOI
  15. Gopal, D., Moreno, J. M., López, R. R., , Kybernetika 60 (2024), 394-411. MR4777315DOI
  16. Goetschel, R., Voxman, W., , Fuzzy Sets Syst. 18 (1986), 1, 31-43. Zbl0626.26014MR0825618DOI
  17. Kaleva, O., , Fuzzy Sets Syst. 17 (1985), 1, 53-65. Zbl0584.54004MR0808463DOI
  18. Kaleva, O., , Fuzzy Sets Syst. 24 (1987), 3, 301-317. Zbl1100.34500MR0919058DOI
  19. Kratschmer, V., , Fuzzy Sets Syst. 126 (2002), 2, 253-263. MR1884692DOI
  20. Malinowski, M. T., , Inform. Sci. 252 (2013), 62-80. MR3123920DOI
  21. Mazandarani, M., Xiu, L., , IEEE Access 9 (2021), 62195-62211. DOI
  22. Ming, M., , Fuzzy Sets Syst. 55 (1993), 3, 313-318. MR1223869DOI
  23. Nguyen, H. T., , J. Math. Anal. Appl. 64 (1978), 2, 369-380. Zbl0377.04004MR0480044DOI
  24. Puri, M. L., Ralescu, D. A., , J. Math. Anal. Appl. 91 (1983), 2, 552-558. MR0690888DOI
  25. Puri, M. L., Ralescu, D. A., , J. Math. Anal. Appl. 114 (1986), 2, 409-422. Zbl0605.60038MR0833596DOI
  26. Puri, M. L., Ralescu, D. A., 10.1016/0022-247X(91)90293-9, J. Math. Anal. Appl. 160 (1991), 1, 107-122. Zbl0737.60005MR1124080DOI10.1016/0022-247X(91)90293-9
  27. Rojas-Medar, M., Jimenez-Gamero, M., Chalco-Cano, Y., Viera-Brandao, A., , Fuzzy Sets Syst. 152 (2005), 2, 173-190. MR2138505DOI
  28. Seikkala, S., , Fuzzy Sets Syst. 24 (1987), 3, 319-330. MR0919059DOI
  29. Stefanini, L., Bede, B., , Nonlinear Analysis: Theory Methods Appl. 71 (2009), 3, 1311-1328. MR2527548DOI

NotesEmbed ?

top

You must be logged in to post comments.