Asymptotic fuzzy contractive mappings in fuzzy metric spaces

Dhananjay Gopal; Juan Martínez-Moreno; Rosana Rodríguez-López

Kybernetika (2024)

  • Issue: 3, page 394-411
  • ISSN: 0023-5954

Abstract

top
Fixed point theory in fuzzy metric spaces has grown to become an intensive field of research. However, due to the complexity involved in the nature of fuzzy metrics, the authors need to develop innovative machinery to establish new fixed point theorems in such kind of spaces. In this paper, we propose the concepts of asymptotic fuzzy ψ -contractive and asymptotic fuzzy Meir-Keeler mappings, and describe some new machinery by which the corresponding fixed point theorems are proved. In this sense, the techniques used for the proofs in Section 5 are completely new.

How to cite

top

Gopal, Dhananjay, Martínez-Moreno, Juan, and Rodríguez-López, Rosana. "Asymptotic fuzzy contractive mappings in fuzzy metric spaces." Kybernetika (2024): 394-411. <http://eudml.org/doc/299287>.

@article{Gopal2024,
abstract = {Fixed point theory in fuzzy metric spaces has grown to become an intensive field of research. However, due to the complexity involved in the nature of fuzzy metrics, the authors need to develop innovative machinery to establish new fixed point theorems in such kind of spaces. In this paper, we propose the concepts of asymptotic fuzzy $\psi $-contractive and asymptotic fuzzy Meir-Keeler mappings, and describe some new machinery by which the corresponding fixed point theorems are proved. In this sense, the techniques used for the proofs in Section 5 are completely new.},
author = {Gopal, Dhananjay, Martínez-Moreno, Juan, Rodríguez-López, Rosana},
journal = {Kybernetika},
keywords = {fuzzy metric space; asymptotic fuzzy $\psi $-contractive mapping; asymptotic fuzzy Meir–Keeler mapping; fixed point},
language = {eng},
number = {3},
pages = {394-411},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Asymptotic fuzzy contractive mappings in fuzzy metric spaces},
url = {http://eudml.org/doc/299287},
year = {2024},
}

TY - JOUR
AU - Gopal, Dhananjay
AU - Martínez-Moreno, Juan
AU - Rodríguez-López, Rosana
TI - Asymptotic fuzzy contractive mappings in fuzzy metric spaces
JO - Kybernetika
PY - 2024
PB - Institute of Information Theory and Automation AS CR
IS - 3
SP - 394
EP - 411
AB - Fixed point theory in fuzzy metric spaces has grown to become an intensive field of research. However, due to the complexity involved in the nature of fuzzy metrics, the authors need to develop innovative machinery to establish new fixed point theorems in such kind of spaces. In this paper, we propose the concepts of asymptotic fuzzy $\psi $-contractive and asymptotic fuzzy Meir-Keeler mappings, and describe some new machinery by which the corresponding fixed point theorems are proved. In this sense, the techniques used for the proofs in Section 5 are completely new.
LA - eng
KW - fuzzy metric space; asymptotic fuzzy $\psi $-contractive mapping; asymptotic fuzzy Meir–Keeler mapping; fixed point
UR - http://eudml.org/doc/299287
ER -

References

top
  1. Abbasi, N., Golshan, H. M., , Kybernetika 52 (2016), 6, 929-942. MR3607855DOI
  2. Boyd, D. W., Wong, J. S. W., , Proc. Amer. Math. Soc. 20 (1969), 458-464. MR0239559DOI
  3. George, A., Veeramani, P., , Fuzzy Sets Systems 64 (1994), 395-399. Zbl0843.54014MR1289545DOI
  4. Gopal, D., Abbas, M., Imdad, M., ψ -weak contractions in fuzzy metric spaces., Iranian J. Fuzzy Syst. 8(5) (2011), 141-148. MR2907800
  5. Gopal, D., Martínez-Moreno, J., , Kybernetika 57 (2021), 6, 908-921. MR4376867DOI
  6. Gopal, D., Vetro, C., Some new fixed point theorems in fuzzy metric spaces., Iranian J. Fuzzy Syst. 11(3) (2014), 95-107. MR3237493
  7. Grabiec, M., , Fuzzy Sets Systems 27 (1988), 385-389. Zbl0664.54032MR0956385DOI
  8. Gregori, V., Miñana, J. J., , Fuzzy Sets Systems 300 (2016), 93-101. MR3226661DOI
  9. Gregori, V., Miñana, J. J., Roig, B., Sapena, A., , Fuzzy Sets Systems 444 (2022), 144-155. MR4438147DOI
  10. Gregori, V., Sapena, A., , Fuzzy Sets Systems 125 (2002), 245-252. MR1880341DOI
  11. Hadžić, O., Pap, E., Fixed Point Theory in Probabilistic Metric Spaces., Kluwer Academic Publishers, Dordrecht 2001. Zbl1265.54127MR1896451
  12. Jachymski, J., Jóźwik, I., , J. Math. Anal. Appl. 300 (2004), 147-1592. MR2100243DOI
  13. Kirk, W. A., , J. Math. Anal. Appl. 277 (2003), 645-650. MR1961251DOI
  14. Klement, E. P., Mesiar, R., Pap, E., Triangular Norms., Kluwer, Dordrecht 2000. Zbl1087.20041MR1790096
  15. Kramosil, I., Michálek, J., Fuzzy metric and statistical metric spaces., Kybernetica 15 (1975), 326-334. MR0410633
  16. Leader, S., , Proc. Amer. Math. Soc. 86 (1982), 153-158. MR0663887DOI
  17. Lindstrom, T., Ross, D. A., , J. Fixed Point Theory Appl. 25 (2023), 35. MR4526053DOI
  18. Martínez-Moreno, J., Gopal, D., Rakoćević, V., Ranadive, A. S., , Adv. Computat. Intelligence 2 (2022), 1-7. DOI
  19. Miheţ, D., , Fuzzy Sets Systems 159 (2008), 739-744. MR2410532DOI
  20. Miñana, J. J., Sostak, A., Valero, O., , Fuzzy Sets Systems 468 (2023), 108625. MR4605381DOI
  21. Schweizer, B., Sklar, A., Probabilistic Metric Spaces., Elsevier, New York 1983. Zbl0546.60010MR0790314
  22. Shoaib, A., Khaliq, K., , Fixed Point Theory Algor. Sci. Engrg. 27 (2022), 1-22. MR4522842DOI
  23. Shoaib, A., Azam, A., Shahzad, A., , J. Comput. Anal. Appl. 24 (2018), 692-699. MR3752551DOI
  24. Shukla, S., Gopal, D., Sintunavarat, W., , Fuzzy Sets Systems 350 (2018), 85-95. MR3852589DOI
  25. Suzuki, T., , Nonlinear Anal. 64 (2006), 971-978. MR2196804DOI
  26. Zheng, D., Wang, P., , Fuzzy Sets Systems 370 (2019), 120-128. MR3960172DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.