Asymptotic fuzzy contractive mappings in fuzzy metric spaces
Dhananjay Gopal; Juan Martínez-Moreno; Rosana Rodríguez-López
Kybernetika (2024)
- Issue: 3, page 394-411
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topGopal, Dhananjay, Martínez-Moreno, Juan, and Rodríguez-López, Rosana. "Asymptotic fuzzy contractive mappings in fuzzy metric spaces." Kybernetika (2024): 394-411. <http://eudml.org/doc/299287>.
@article{Gopal2024,
abstract = {Fixed point theory in fuzzy metric spaces has grown to become an intensive field of research. However, due to the complexity involved in the nature of fuzzy metrics, the authors need to develop innovative machinery to establish new fixed point theorems in such kind of spaces. In this paper, we propose the concepts of asymptotic fuzzy $\psi $-contractive and asymptotic fuzzy Meir-Keeler mappings, and describe some new machinery by which the corresponding fixed point theorems are proved. In this sense, the techniques used for the proofs in Section 5 are completely new.},
author = {Gopal, Dhananjay, Martínez-Moreno, Juan, Rodríguez-López, Rosana},
journal = {Kybernetika},
keywords = {fuzzy metric space; asymptotic fuzzy $\psi $-contractive mapping; asymptotic fuzzy Meir–Keeler mapping; fixed point},
language = {eng},
number = {3},
pages = {394-411},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Asymptotic fuzzy contractive mappings in fuzzy metric spaces},
url = {http://eudml.org/doc/299287},
year = {2024},
}
TY - JOUR
AU - Gopal, Dhananjay
AU - Martínez-Moreno, Juan
AU - Rodríguez-López, Rosana
TI - Asymptotic fuzzy contractive mappings in fuzzy metric spaces
JO - Kybernetika
PY - 2024
PB - Institute of Information Theory and Automation AS CR
IS - 3
SP - 394
EP - 411
AB - Fixed point theory in fuzzy metric spaces has grown to become an intensive field of research. However, due to the complexity involved in the nature of fuzzy metrics, the authors need to develop innovative machinery to establish new fixed point theorems in such kind of spaces. In this paper, we propose the concepts of asymptotic fuzzy $\psi $-contractive and asymptotic fuzzy Meir-Keeler mappings, and describe some new machinery by which the corresponding fixed point theorems are proved. In this sense, the techniques used for the proofs in Section 5 are completely new.
LA - eng
KW - fuzzy metric space; asymptotic fuzzy $\psi $-contractive mapping; asymptotic fuzzy Meir–Keeler mapping; fixed point
UR - http://eudml.org/doc/299287
ER -
References
top- Abbasi, N., Golshan, H. M., , Kybernetika 52 (2016), 6, 929-942. MR3607855DOI
- Boyd, D. W., Wong, J. S. W., , Proc. Amer. Math. Soc. 20 (1969), 458-464. MR0239559DOI
- George, A., Veeramani, P., , Fuzzy Sets Systems 64 (1994), 395-399. Zbl0843.54014MR1289545DOI
- Gopal, D., Abbas, M., Imdad, M., -weak contractions in fuzzy metric spaces., Iranian J. Fuzzy Syst. 8(5) (2011), 141-148. MR2907800
- Gopal, D., Martínez-Moreno, J., , Kybernetika 57 (2021), 6, 908-921. MR4376867DOI
- Gopal, D., Vetro, C., Some new fixed point theorems in fuzzy metric spaces., Iranian J. Fuzzy Syst. 11(3) (2014), 95-107. MR3237493
- Grabiec, M., , Fuzzy Sets Systems 27 (1988), 385-389. Zbl0664.54032MR0956385DOI
- Gregori, V., Miñana, J. J., , Fuzzy Sets Systems 300 (2016), 93-101. MR3226661DOI
- Gregori, V., Miñana, J. J., Roig, B., Sapena, A., , Fuzzy Sets Systems 444 (2022), 144-155. MR4438147DOI
- Gregori, V., Sapena, A., , Fuzzy Sets Systems 125 (2002), 245-252. MR1880341DOI
- Hadžić, O., Pap, E., Fixed Point Theory in Probabilistic Metric Spaces., Kluwer Academic Publishers, Dordrecht 2001. Zbl1265.54127MR1896451
- Jachymski, J., Jóźwik, I., , J. Math. Anal. Appl. 300 (2004), 147-1592. MR2100243DOI
- Kirk, W. A., , J. Math. Anal. Appl. 277 (2003), 645-650. MR1961251DOI
- Klement, E. P., Mesiar, R., Pap, E., Triangular Norms., Kluwer, Dordrecht 2000. Zbl1087.20041MR1790096
- Kramosil, I., Michálek, J., Fuzzy metric and statistical metric spaces., Kybernetica 15 (1975), 326-334. MR0410633
- Leader, S., , Proc. Amer. Math. Soc. 86 (1982), 153-158. MR0663887DOI
- Lindstrom, T., Ross, D. A., , J. Fixed Point Theory Appl. 25 (2023), 35. MR4526053DOI
- Martínez-Moreno, J., Gopal, D., Rakoćević, V., Ranadive, A. S., , Adv. Computat. Intelligence 2 (2022), 1-7. DOI
- Miheţ, D., , Fuzzy Sets Systems 159 (2008), 739-744. MR2410532DOI
- Miñana, J. J., Sostak, A., Valero, O., , Fuzzy Sets Systems 468 (2023), 108625. MR4605381DOI
- Schweizer, B., Sklar, A., Probabilistic Metric Spaces., Elsevier, New York 1983. Zbl0546.60010MR0790314
- Shoaib, A., Khaliq, K., , Fixed Point Theory Algor. Sci. Engrg. 27 (2022), 1-22. MR4522842DOI
- Shoaib, A., Azam, A., Shahzad, A., , J. Comput. Anal. Appl. 24 (2018), 692-699. MR3752551DOI
- Shukla, S., Gopal, D., Sintunavarat, W., , Fuzzy Sets Systems 350 (2018), 85-95. MR3852589DOI
- Suzuki, T., , Nonlinear Anal. 64 (2006), 971-978. MR2196804DOI
- Zheng, D., Wang, P., , Fuzzy Sets Systems 370 (2019), 120-128. MR3960172DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.