Inequalities involving norm and numerical radius of Hilbert space operators

Nasrollah Goudarzi; Zahra Heydarbeygi

Commentationes Mathematicae Universitatis Carolinae (2024)

  • Issue: 1, page 45-52
  • ISSN: 0010-2628

Abstract

top
This paper presents several numerical radii and norm inequalities for Hilbert space operators. These inequalities improve some earlier related inequalities. For an operator A , we prove that ω 2 ( A ) A * A + A A * 2 - 1 2 R ( ( 1 - t ) A * A + t A A * - ( ( 1 - t ) ( A * A ) 1 / 2 + ( A A * ) 1 / 2 ) 2 ) where R = max { t , 1 - t } and 0 t 1 .

How to cite

top

Goudarzi, Nasrollah, and Heydarbeygi, Zahra. "Inequalities involving norm and numerical radius of Hilbert space operators." Commentationes Mathematicae Universitatis Carolinae (2024): 45-52. <http://eudml.org/doc/299939>.

@article{Goudarzi2024,
abstract = {This paper presents several numerical radii and norm inequalities for Hilbert space operators. These inequalities improve some earlier related inequalities. For an operator $A$, we prove that \begin\{align*\} \omega ^\{2\}(A)\le & \Big \Vert \frac\{A^\{*\}A+AA^\{*\}\}\{2\} -\frac\{1\}\{2R\}\big (( 1-t)\{\{A\}^\{*\}\}A+tA\{\{A\}^\{*\}\} &-((1-t)(A^\{*\}A)^\{1/2\}+( AA^\{*\})^\{1/2\} )^\{2\} \big ) \Big \Vert \end\{align*\} where $R=\max \lbrace t,1-t\rbrace $ and $0\le t\le 1$.},
author = {Goudarzi, Nasrollah, Heydarbeygi, Zahra},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {bounded linear operator; numerical radius; operator norm; inequality},
language = {eng},
number = {1},
pages = {45-52},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Inequalities involving norm and numerical radius of Hilbert space operators},
url = {http://eudml.org/doc/299939},
year = {2024},
}

TY - JOUR
AU - Goudarzi, Nasrollah
AU - Heydarbeygi, Zahra
TI - Inequalities involving norm and numerical radius of Hilbert space operators
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2024
PB - Charles University in Prague, Faculty of Mathematics and Physics
IS - 1
SP - 45
EP - 52
AB - This paper presents several numerical radii and norm inequalities for Hilbert space operators. These inequalities improve some earlier related inequalities. For an operator $A$, we prove that \begin{align*} \omega ^{2}(A)\le & \Big \Vert \frac{A^{*}A+AA^{*}}{2} -\frac{1}{2R}\big (( 1-t){{A}^{*}}A+tA{{A}^{*}} &-((1-t)(A^{*}A)^{1/2}+( AA^{*})^{1/2} )^{2} \big ) \Big \Vert \end{align*} where $R=\max \lbrace t,1-t\rbrace $ and $0\le t\le 1$.
LA - eng
KW - bounded linear operator; numerical radius; operator norm; inequality
UR - http://eudml.org/doc/299939
ER -

References

top
  1. Bhatia R., Positive Definite Matrices, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, 2007. MR2284176
  2. Furuichi S., Moradi H. R., Sababheh M., 10.7153/jmi-2021-15-10, J. Math. Inequal. 15 (2021), no. 1, 107–116. MR4364630DOI10.7153/jmi-2021-15-10
  3. El-Haddad M., Kittaneh F., 10.4064/sm182-2-3, Studia Math. 182 (2007), no. 2, 133–140. MR2338481DOI10.4064/sm182-2-3
  4. Hirzallah O., Kittaneh F., Shebrawi K., Numerical radius inequalities for certain 2 × 2 operator matrices, Integral Equations Operator Theory 71 (2011), no. 2, 129–147. MR2822431
  5. Kittaneh F., 10.2977/prims/1195175202, Publ. Res. Inst. Math. Sci. 24 (1988), no. 2, 283–293. MR0944864DOI10.2977/prims/1195175202
  6. Kittaneh F., 10.4064/sm168-1-5, Studia Math. 168 (2005), no. 1, 73–80. MR2133388DOI10.4064/sm168-1-5
  7. Kittaneh F., Moradi H. R., Cauchy–Schwarz type inequalities and applications to numerical radius inequalities, Math. Inequal. Appl. 23 (2020), no. 3, 1117–1125. MR4128973
  8. Moradi H. R., Sababheh M., 10.1080/03081087.2019.1703886, Linear Multilinear Algebra 69 (2021), no. 5, 921–933. MR4230456DOI10.1080/03081087.2019.1703886
  9. Omidvar M. E., Moradi H. R., Better bounds on the numerical radii of Hilbert space operators, Linear Algebra Appl. 604 (2020), 265–277. MR4121102
  10. Omidvar M. E., Moradi H. R., 10.1080/03081087.2020.1810200, Linear Multilinear Algebra 69 (2021), no. 5, 946–956. MR4230458DOI10.1080/03081087.2020.1810200
  11. Sababheh M., Convexity and matrix means, Linear Algebra Appl. 506 (2016), 588–602. MR3530695
  12. Sababheh M., Conde C., Moradi H. R., A convex-block approach for numerical radius inequalities, arXiv:2302.06777v1 [math.FA] (2023), 17 pages. MR4754480
  13. Sababheh M., Moradi H. R., More accurate numerical radius inequalities (I), Linear Multilinear Algebra. 69 (2021), no. 10, 1964–1973. MR4279169
  14. Sababheh M., Moradi H. R., Heydarbeygi Z., 10.7153/oam-2022-16-19, Oper. Matrices. 16 (2022), no. 1, 239–250. MR4428609DOI10.7153/oam-2022-16-19
  15. Sheybani S., Sababheh M., Moradi H. R., 10.1007/s10013-021-00533-4, Vietnam J. Math. 51 (2023), no. 2, 363–377. MR4545272DOI10.1007/s10013-021-00533-4

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.