Inequalities involving norm and numerical radius of Hilbert space operators
Nasrollah Goudarzi; Zahra Heydarbeygi
Commentationes Mathematicae Universitatis Carolinae (2024)
- Issue: 1, page 45-52
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topGoudarzi, Nasrollah, and Heydarbeygi, Zahra. "Inequalities involving norm and numerical radius of Hilbert space operators." Commentationes Mathematicae Universitatis Carolinae (2024): 45-52. <http://eudml.org/doc/299939>.
@article{Goudarzi2024,
abstract = {This paper presents several numerical radii and norm inequalities for Hilbert space operators. These inequalities improve some earlier related inequalities. For an operator $A$, we prove that \begin\{align*\} \omega ^\{2\}(A)\le & \Big \Vert \frac\{A^\{*\}A+AA^\{*\}\}\{2\} -\frac\{1\}\{2R\}\big (( 1-t)\{\{A\}^\{*\}\}A+tA\{\{A\}^\{*\}\} &-((1-t)(A^\{*\}A)^\{1/2\}+( AA^\{*\})^\{1/2\} )^\{2\} \big ) \Big \Vert \end\{align*\}
where $R=\max \lbrace t,1-t\rbrace $ and $0\le t\le 1$.},
author = {Goudarzi, Nasrollah, Heydarbeygi, Zahra},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {bounded linear operator; numerical radius; operator norm; inequality},
language = {eng},
number = {1},
pages = {45-52},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Inequalities involving norm and numerical radius of Hilbert space operators},
url = {http://eudml.org/doc/299939},
year = {2024},
}
TY - JOUR
AU - Goudarzi, Nasrollah
AU - Heydarbeygi, Zahra
TI - Inequalities involving norm and numerical radius of Hilbert space operators
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2024
PB - Charles University in Prague, Faculty of Mathematics and Physics
IS - 1
SP - 45
EP - 52
AB - This paper presents several numerical radii and norm inequalities for Hilbert space operators. These inequalities improve some earlier related inequalities. For an operator $A$, we prove that \begin{align*} \omega ^{2}(A)\le & \Big \Vert \frac{A^{*}A+AA^{*}}{2} -\frac{1}{2R}\big (( 1-t){{A}^{*}}A+tA{{A}^{*}} &-((1-t)(A^{*}A)^{1/2}+( AA^{*})^{1/2} )^{2} \big ) \Big \Vert \end{align*}
where $R=\max \lbrace t,1-t\rbrace $ and $0\le t\le 1$.
LA - eng
KW - bounded linear operator; numerical radius; operator norm; inequality
UR - http://eudml.org/doc/299939
ER -
References
top- Bhatia R., Positive Definite Matrices, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, 2007. MR2284176
- Furuichi S., Moradi H. R., Sababheh M., 10.7153/jmi-2021-15-10, J. Math. Inequal. 15 (2021), no. 1, 107–116. MR4364630DOI10.7153/jmi-2021-15-10
- El-Haddad M., Kittaneh F., 10.4064/sm182-2-3, Studia Math. 182 (2007), no. 2, 133–140. MR2338481DOI10.4064/sm182-2-3
- Hirzallah O., Kittaneh F., Shebrawi K., Numerical radius inequalities for certain operator matrices, Integral Equations Operator Theory 71 (2011), no. 2, 129–147. MR2822431
- Kittaneh F., 10.2977/prims/1195175202, Publ. Res. Inst. Math. Sci. 24 (1988), no. 2, 283–293. MR0944864DOI10.2977/prims/1195175202
- Kittaneh F., 10.4064/sm168-1-5, Studia Math. 168 (2005), no. 1, 73–80. MR2133388DOI10.4064/sm168-1-5
- Kittaneh F., Moradi H. R., Cauchy–Schwarz type inequalities and applications to numerical radius inequalities, Math. Inequal. Appl. 23 (2020), no. 3, 1117–1125. MR4128973
- Moradi H. R., Sababheh M., 10.1080/03081087.2019.1703886, Linear Multilinear Algebra 69 (2021), no. 5, 921–933. MR4230456DOI10.1080/03081087.2019.1703886
- Omidvar M. E., Moradi H. R., Better bounds on the numerical radii of Hilbert space operators, Linear Algebra Appl. 604 (2020), 265–277. MR4121102
- Omidvar M. E., Moradi H. R., 10.1080/03081087.2020.1810200, Linear Multilinear Algebra 69 (2021), no. 5, 946–956. MR4230458DOI10.1080/03081087.2020.1810200
- Sababheh M., Convexity and matrix means, Linear Algebra Appl. 506 (2016), 588–602. MR3530695
- Sababheh M., Conde C., Moradi H. R., A convex-block approach for numerical radius inequalities, arXiv:2302.06777v1 [math.FA] (2023), 17 pages. MR4754480
- Sababheh M., Moradi H. R., More accurate numerical radius inequalities (I), Linear Multilinear Algebra. 69 (2021), no. 10, 1964–1973. MR4279169
- Sababheh M., Moradi H. R., Heydarbeygi Z., 10.7153/oam-2022-16-19, Oper. Matrices. 16 (2022), no. 1, 239–250. MR4428609DOI10.7153/oam-2022-16-19
- Sheybani S., Sababheh M., Moradi H. R., 10.1007/s10013-021-00533-4, Vietnam J. Math. 51 (2023), no. 2, 363–377. MR4545272DOI10.1007/s10013-021-00533-4
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.