On the set function
Commentationes Mathematicae Universitatis Carolinae (2024)
- Issue: 1, page 99-129
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topMacías, Sergio. "On the set function $\wp $." Commentationes Mathematicae Universitatis Carolinae (2024): 99-129. <http://eudml.org/doc/299945>.
@article{Macías2024,
abstract = {Inspired by the work that Professor Janusz R. Prajs did on homogeneous metric continua in his paper (2010) and the version of his work for Hausdorff continua with the uniform property of Effros done by this author, we introduce a new set function, $\wp $, and present properties of it.},
author = {Macías, Sergio},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {additivity; almost connected im kleinen; analytic set; aposyndetic continuum; atomic map; continuum; decomposable continuum; $G_\delta $ set; hyperspace; indecomposable continuum; monotone map; property of Kelley; set function $\mathcal \{K\}$; set function $\mathcal \{T\}$; set function $\wp $; set functions continuous on continua; uniform property of Effros; upper semicontinuous function},
language = {eng},
number = {1},
pages = {99-129},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the set function $\wp $},
url = {http://eudml.org/doc/299945},
year = {2024},
}
TY - JOUR
AU - Macías, Sergio
TI - On the set function $\wp $
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2024
PB - Charles University in Prague, Faculty of Mathematics and Physics
IS - 1
SP - 99
EP - 129
AB - Inspired by the work that Professor Janusz R. Prajs did on homogeneous metric continua in his paper (2010) and the version of his work for Hausdorff continua with the uniform property of Effros done by this author, we introduce a new set function, $\wp $, and present properties of it.
LA - eng
KW - additivity; almost connected im kleinen; analytic set; aposyndetic continuum; atomic map; continuum; decomposable continuum; $G_\delta $ set; hyperspace; indecomposable continuum; monotone map; property of Kelley; set function $\mathcal {K}$; set function $\mathcal {T}$; set function $\wp $; set functions continuous on continua; uniform property of Effros; upper semicontinuous function
UR - http://eudml.org/doc/299945
ER -
References
top- Bellamy D. P., Porter K. F., 10.1090/S0002-9939-1991-1070510-X, Proc. Am. Math. Soc. 113 (1991), no. 2, 593–598. MR1070510DOI10.1090/S0002-9939-1991-1070510-X
- Camargo J., Macías S., 10.1007/s12346-021-00556-9, Qual. Theory Dyn. Syst. 21 (2022), no. 2, Paper No. 25, 43 pages. MR4372608DOI10.1007/s12346-021-00556-9
- Charatonik W. J., 10.1016/S0166-8641(98)00055-8, Topology Appl. 96 (1999), no. 3, 209–216. MR1709689DOI10.1016/S0166-8641(98)00055-8
- Engelking R., General Topology, Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
- Goodykoontz J. T, Jr., 10.4064/fm-95-1-1-10, Fund. Math. 95 (1977), no. 1, 1–10. MR0436097DOI10.4064/fm-95-1-1-10
- Gorka S., Several Set Functions and Continuous Maps, Thesis Ph.D. Dissertation, University of Delaware, Delaware, 1997. MR2696379
- Hagopian C. L., 10.1090/S0002-9939-1969-0247612-9, Proc. Amer. Math. Soc. 23 (1969), 615–622. MR0247612DOI10.1090/S0002-9939-1969-0247612-9
- Hagopian C. L., 10.1090/S0002-9947-1970-0254823-8, Trans. Amer. Math. Soc. 147 (1970), 389–402. MR0254823DOI10.1090/S0002-9947-1970-0254823-8
- Ingram W. T., Mahavier W. S., Inverse limits of upper semi-continuous set valued functions, Houston J. Math. 32 (2006), no. 1, 119–130. MR2202356
- Jones F. B., 10.2307/2372339, Amer. J. Math. 70 (1948), 403–413. MR0025161DOI10.2307/2372339
- Kechris A. S., Classical Descriptive Set Theory, Graduate Texts in Mathematics, 156, Springer, New York, 1995. Zbl0819.04002MR1321597
- Macías S., 10.1016/j.topol.2017.08.009, Topology Appl. 230 (2017), 338–352. MR3702777DOI10.1016/j.topol.2017.08.009
- Macías S., On Jones’ set function and the property of Kelley for Hausdorff continua, Topology Appl. 226 (2017), 51–65. MR3660264
- Macías S., Topics on Continua, Springer, Cham, 2018. MR3823258
- Macías S., Set Function - an Account on F. B. Jones’ Contributions to Topology, Developments in Mathematics, 67, Springer, Cham, 2021. MR4238567
- Macías S., 10.1515/ms-2023-0075, Math. Slovaca 73 (2023), no. 4, 1013–1022. MR4623271DOI10.1515/ms-2023-0075
- Makuchowski W., On local connectedness in hyperspaces, Bull. Polish Acad. Sci. Math. 47 (1999), no. 2, 119–126. MR1686673
- Mrówka S., 10.4064/fm-45-1-247-253, Fund. Math. 45 (1958), 237–346. MR0098359DOI10.4064/fm-45-1-247-253
- Nadler S. B., Jr., Hyperspaces of Sets: A Text with Research Questions, Aportaciones Matemáticas: Textos, 33, Sociedad Matemática Mexicana, México, 2006. MR2293338
- Prajs J. R., 10.4153/CJM-2010-010-4, Canad. J. Math. 62 (2010), no. 1, 182–201. MR2597029DOI10.4153/CJM-2010-010-4
- Rogers J. T., Jr., 10.1090/S0002-9939-1985-0806092-1, Proc. Amer. Math. Soc. 95 (1985), no. 3, 483–486. MR0806092DOI10.1090/S0002-9939-1985-0806092-1
- Rogers J. T., Jr., 10.1090/S0002-9939-03-06888-6, Proc. Amer. Math. Soc. 131 (2003), no. 10, 3285–3288. MR1992870DOI10.1090/S0002-9939-03-06888-6
- Willard S., General Topology, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, 1970. Zbl1052.54001MR0264581
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.